• Title/Summary/Keyword: Conceptual Modeling

Search Result 443, Processing Time 0.021 seconds

Changes in air pollutant emissions from road vehicles due to autonomous driving technology: A conceptual modeling approach

  • Hwang, Ha;Song, Chang-Keun
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.366-373
    • /
    • 2020
  • The autonomous vehicles (AVs) could make a positive or negative impact on reducing mobile emissions. This study investigated the changes of mobile emissions that could be caused by large-scale adoption of AVs. The factors of road capacity increase and speed limit increase impacts were simulated using a conceptual modeling approach that combines a hypothetical speed-emission function and a traffic demand model using a virtual transportation network. The simulation results show that road capacity increase impact is significant in decreasing mobile emissions until the market share of AVs is less than 80%. If the road capacity increases by 100%, the mobile emissions will decrease by about 30%. On the other hand, driving speed limit increase impact is significant in increasing mobile emissions, and the environmentally desirable speed limit was found at around 95 km/h. If the speed limit increases to 140 km/h, the mobile emissions will increase by about 25%. This is because some vehicles begin to bypass the congested routes at high speeds as speed limit increases. Based on the simulation results, it is clear that the vehicle platooning technology implemented at reasonable speed limit is one of the AV technologies that are encouraging from the environmental point of view.

The Effect of Using Graphing Calculators on Students' Understanding Functions and Attitudes Towards Mathematics and Graphing Calculators

  • Kwon, Oh-Nam;Kim, Min-Kyeong
    • Research in Mathematical Education
    • /
    • v.4 no.1
    • /
    • pp.1-22
    • /
    • 2000
  • The purpose of this study was to investigate the effects of using graphing calculators on students' understanding of the linear and quadratic function concepts. The populators of this study are tenth graders at high school in Seoul, one class for the treatment group and another class for the comparison group, and experiment period is 14 weeks including two weeks for school regular exams.Function tests used in the study was proposed which described a conceptual knowledge of functions in terms of the following components: a) Conceptual understanding, b) Interpreting a function in terms of a verbal experission, c) Translating between different representations of functions, and d) Mathematical modeling a real-world situation using functions. Even though the group test means of the individual components of conceptual understanding, interpreting, translating, mathematical modeling did not differ significantly, there is evidence that the two groups differed in their performance on conceptual understanding. It was shown that students learned algebra using graphing calculators view graphs more globally. The attitude survey assessed students' attitudes and perceptions about the value of mathematics, the usefulness of graphs in mathematics, mathematical confidence, mathematics anxiety, and their feelings about calculators. The overall t-test was not statistically significant, but the students in the treatment group showed significantly different levels of anxiety toward mathematics.

  • PDF

Conceptual Design for the Dispersal and Deposition Modelling of Fallout Ash from Mt. Baekdu Volcano (백두산 천지 화산의 화산재 확산과 침적 모델링을 위한 개념적 설계)

  • Yun, Sung-Hyo
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.273-289
    • /
    • 2013
  • Fallout ash is a notorious hazard that can have a variety of damages on agriculture and infrastructure and, most notably to aviation and human health. This study discusses the design of a conceptual model to aid in modeling the dispersal and deposition of ash from Mt. Baekdu volcano. It includes a discussion of assumptions and boundary conditions of the model as well as a detailed diagram of the conceptual model, complete with input parameters, units and equations. The two main processes contained within the model are the dispersal and deposition of ash, the outputs obtained from running the model, if designed, would be the total amount of fine ash contained in the eruption column, distance travelled by ash and ash thickness at surface.

A Conceptual Information Model of Mechanical Assemblies Incorporating Assembly and Kinematic Constraints, and Tolerances (조립 및 기구학 구속 조건, 공차를 포함하는 기계 조립체의 개념적 정보 모델)

  • Han Y,-H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.2
    • /
    • pp.133-142
    • /
    • 2005
  • This paper proposes an object-oriented conceptual information model of mechanical assemblies, named open assembly model (OAM). The proposed assembly model primarily defines hierarchical relationships between parts and subassemblies. Together with the assembly hierarchy. the model also provides a way to represent tolerances, kinematic information, and parametric assembly constraints. Relational information such as mating conditions and degree of freedom between parts and subassemblies is captured via assembly features and relationships thereof. The information model is described using class diagrams of the Unified Modeling Language (UML), and instance diagrams are used to exemplify the proposed information model. The conceptual model presented in this paper is an integrated information model for assembly representation, which could supply necessary information for tolerance analysis and synthesis, kinematic simulation, and assembly simulation. Such a conceptual information model plays an important role for the exchange of information between modeling, analysis and planning systems. Hence, the proposed model could serve as a framework for developing data exchange standards of mechanical assemblies. The proposed model is demonstrated through a case study of a planetary gear assembly.

Applying Meta-model Formalization of Part-Whole Relationship to UML: Experiment on Classification of Aggregation and Composition (UML의 부분-전체 관계에 대한 메타모델 형식화 이론의 적용: 집합연관 및 복합연관 판별 실험)

  • Kim, Taekyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.99-118
    • /
    • 2015
  • Object-oriented programming languages have been widely selected for developing modern information systems. The use of concepts relating to object-oriented (OO, in short) programming has reduced efforts of reusing pre-existing codes, and the OO concepts have been proved to be a useful in interpreting system requirements. In line with this, we have witnessed that a modern conceptual modeling approach supports features of object-oriented programming. Unified Modeling Language or UML becomes one of de-facto standards for information system designers since the language provides a set of visual diagrams, comprehensive frameworks and flexible expressions. In a modeling process, UML users need to consider relationships between classes. Based on an explicit and clear representation of classes, the conceptual model from UML garners necessarily attributes and methods for guiding software engineers. Especially, identifying an association between a class of part and a class of whole is included in the standard grammar of UML. The representation of part-whole relationship is natural in a real world domain since many physical objects are perceived as part-whole relationship. In addition, even abstract concepts such as roles are easily identified by part-whole perception. It seems that a representation of part-whole in UML is reasonable and useful. However, it should be admitted that the use of UML is limited due to the lack of practical guidelines on how to identify a part-whole relationship and how to classify it into an aggregate- or a composite-association. Research efforts on developing the procedure knowledge is meaningful and timely in that misleading perception to part-whole relationship is hard to be filtered out in an initial conceptual modeling thus resulting in deterioration of system usability. The current method on identifying and classifying part-whole relationships is mainly counting on linguistic expression. This simple approach is rooted in the idea that a phrase of representing has-a constructs a par-whole perception between objects. If the relationship is strong, the association is classified as a composite association of part-whole relationship. In other cases, the relationship is an aggregate association. Admittedly, linguistic expressions contain clues for part-whole relationships; therefore, the approach is reasonable and cost-effective in general. Nevertheless, it does not cover concerns on accuracy and theoretical legitimacy. Research efforts on developing guidelines for part-whole identification and classification has not been accumulated sufficient achievements to solve this issue. The purpose of this study is to provide step-by-step guidelines for identifying and classifying part-whole relationships in the context of UML use. Based on the theoretical work on Meta-model Formalization, self-check forms that help conceptual modelers work on part-whole classes are developed. To evaluate the performance of suggested idea, an experiment approach was adopted. The findings show that UML users obtain better results with the guidelines based on Meta-model Formalization compared to a natural language classification scheme conventionally recommended by UML theorists. This study contributed to the stream of research effort about part-whole relationships by extending applicability of Meta-model Formalization. Compared to traditional approaches that target to establish criterion for evaluating a result of conceptual modeling, this study expands the scope to a process of modeling. Traditional theories on evaluation of part-whole relationship in the context of conceptual modeling aim to rule out incomplete or wrong representations. It is posed that qualification is still important; but, the lack of consideration on providing a practical alternative may reduce appropriateness of posterior inspection for modelers who want to reduce errors or misperceptions about part-whole identification and classification. The findings of this study can be further developed by introducing more comprehensive variables and real-world settings. In addition, it is highly recommended to replicate and extend the suggested idea of utilizing Meta-model formalization by creating different alternative forms of guidelines including plugins for integrated development environments.

Developing a Conceptual ERP Model by using "4+1 View" ("4+1 뷰"를 적용한 ERP 개념 모델 개발)

  • 허분애;정기원;이남용
    • The Journal of Society for e-Business Studies
    • /
    • v.5 no.2
    • /
    • pp.81-99
    • /
    • 2000
  • Nowadays, many commercial ERP products, such as Oracle, SAP, and Baan, etc, are designed based on large-scaled companies. It is difficult for small and medium-size companies with weakness in budgets and resources(e.g., human, organization, technique, and so on) to use them as it was. So, new ERP system need to be provided for small and medium-size companies. In this paper, we model and provide a conceptual ERP model for small and medium-size companies by using "4+1 View" architecture model of Unified Modeling Language(UML). The conceptual ERP model consists of five subsystems: Manufacturing, Sales, HumanResource and Payroll, Accounting, and Trading. Especially, we describe the conceptual ERP model focusing on "Manufacturing" subsystem by using several diagrams of UML. By using the conceptual ERP model, the ERP system′s developers of small and medium-size companies can obtain many benefits: improving the efficiency of software developing process and helping user requirements gathering and description of ERP system′s nonfunctional aspect as well as functional aspect.

  • PDF

A Conceptual Approach for Discovering Proportions of Disjunctive Routing Patterns in a Business Process Model

  • Kim, Kyoungsook;Yeon, Moonsuk;Jeong, Byeongsoo;Kim, Kwanghoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.2
    • /
    • pp.1148-1161
    • /
    • 2017
  • The success of a business process management system stands or falls on the quality of the business processes. Many experiments therefore have been devoting considerable attention to the modeling and analysis of business processes in process-centered organizations. One of those experiments is to apply the probabilistic theories to the analytical evaluations of business process models in order to improve their qualities. In this paper, we excogitate a conceptual way of applying a probability theory of proportions into modeling business processes. There are three types of routing patterns such as sequential, disjunctive, conjunctive and iterative routing patterns in modeling business processes, into which the proportion theory is applicable. This paper focuses on applying the proportion theory to the disjunctive routing patterns, in particular, and formally named proportional information control net that is the formal representation of a corresponding business process model. In this paper, we propose a conceptual approach to discover a proportional information control net from the enactment event histories of the corresponding business process, and describe the details of a series of procedural frameworks and operational mechanisms formally and graphically supporting the proposed approach. We strongly believe that the conceptual approach with the proportional information control net ought to be very useful to improve the quality of business processes by adapting to the reengineering and redesigning the corresponding business processes.

A Review of Open Modeling Platform Towards Integrated Water Environmental Management (통합 물환경 관리를 위한 개방형 모델링 플랫폼 고찰)

  • Lee, Sunghack;Shin, Changmin;Lee, Yongseok;Cho, Jaepil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.636-650
    • /
    • 2020
  • A modeling system that can consider the overall water environment and be used to integrate hydrology, water quality, and aquatic ecosystem on a watershed scale is essential to support decision-making in integrated water resources management (IWRM). In adapting imported models for evaluating the unique water environment in Korea, a platform perspective is becoming increasingly important. In this study, a modeling platform is defined as an ecosystem that continuously grows and provides sustainable values through voluntary participation- and interaction-of all stakeholders- not only experts related to model development, but also model users and decision-makers. We assessed the conceptual values provided by the IWRM modeling platform in terms of openness, transparency, scalability, and sustainability. I We also reviewed the technical aspects of functional and spatial integrations in terms of socio-economic factors and user-centered multi-scale climate-forecast information. Based on those conceptual and technical aspects, we evaluated potential modeling platforms such as Source, FREEWAT, Object Modeling System (OMS), OpenMI, Community Surface-Dynamics Modeling System (CSDMS), and HydroShare. Among them, CSDMS most closely approached the values suggested in model development and offered a basic standard for easy integration of existing models using different program languages. HydroShare showed potential for sharing modeling results with the transparency expected by model user-s. Therefore, we believe that can be used as a reference in development of a modeling platform appropriate for managing the unique integrated water environment in Korea.

State-Based Behavior Modeling in Software and Systems Engineering

  • Sabah Al-Fedaghi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.21-32
    • /
    • 2023
  • The design of complex man-made systems mostly involves a conceptual modeling phase; therefore, it is important to ensure an appropriate analysis method for these models. A key concept for such analysis is the development of a diagramming technique (e.g., UML) because diagrams can describe entities and processes and emphasize important aspects of the systems being described. The analysis also includes an examination of ontological concepts such as states and events, which are used as a basis for the modeling process. Studying fundamental concepts allows us to understand more deeply the relationship between these concepts and modeling frameworks. In this paper, we critically analyze the classic definition of a state utilizing the Thinging machine (TM) model. States in state machine diagrams are considered the appropriate basis for modeling system behavioral aspects. Despite its wide application in hardware design, the integration of a state machine model into a software system's modeling requirements increased the difficulty of graphical representation (e.g., integration between structural and behavioral diagrams). To understand such a problem, in this paper, we project (create an equivalent representation of) states in TM machines. As a case study, we re-modeled a state machine of an assembly line system in a TM. Additionally, we added possible triggers (transitions) of the given states to the TM representation. The outcome is a complicated picture of assembly line behavior. Therefore, as an alternative solution, we re-modeled the assembly line based solely on the TM. This new model presents a clear contrast between state-based modeling of assembly line behavior and the TM approach. The TM modeling seems more systematic than its counterpart, the state machine, and its notions are well defined. In a TM, states are just compound events. A model of a more complex system than the one in the assembly line has strengthened such a conclusion.