
IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

21

Manuscript received May 5, 2023
Manuscript revised May 20, 2023
https://doi.org/10.22937/IJCSNS.2023.23.5.4

State-Based Behavior Modeling in Software and

Systems Engineering

Sabah Al-Fedaghi
salfedaghi@yahoo.com, sabah.alfedaghi@ku.edu.kw

Computer Engineering Department, Kuwait University, Kuwait

Summary
The design of complex man-made systems mostly involves
a conceptual modeling phase; therefore, it is important to
ensure an appropriate analysis method for these models. A
key concept for such analysis is the development of a
diagramming technique (e.g., UML) because diagrams can
describe entities and processes and emphasize important
aspects of the systems being described. The analysis also
includes an examination of ontological concepts such as
states and events, which are used as a basis for the
modeling process. Studying fundamental concepts allows
us to understand more deeply the relationship between
these concepts and modeling frameworks. In this paper, we
critically analyze the classic definition of a state utilizing
the Thinging machine (TM) model. States in state machine
diagrams are considered the appropriate basis for modeling
system behavioral aspects. Despite its wide application in
hardware design, the integration of a state machine model
into a software system’s modeling requirements increased
the difficulty of graphical representation (e.g., integration
between structural and behavioral diagrams). To
understand such a problem, in this paper, we project (create
an equivalent representation of) states in TM machines. As
a case study, we re-modeled a state machine of an assembly
line system in a TM. Additionally, we added possible
triggers (transitions) of the given states to the TM
representation. The outcome is a complicated picture of
assembly line behavior. Therefore, as an alternative
solution, we re-modeled the assembly line based solely on
the TM. This new model presents a clear contrast between
state-based modeling of assembly line behavior and the TM
approach. The TM modeling seems more systematic than
its counterpart, the state machine, and its notions are well
defined. In a TM, states are just compound events. A model
of a more complex system than the one in the assembly line
has strengthened such a conclusion.

Key words:
Conceptual modeling, state, thinging machine model, state
machine, event

1. Introduction

The design of complex man-made systems mostly
involves a modeling phase; therefore, it is important to
ensure an appropriate analysis (understand, design, and
evaluate) method for these models and their fundamental

concepts. The analysis can be viewed as including
software engineering and philosophy simultaneously [1].

A key concept for such analysis is the development of a
diagramming technique because diagrams can describe
entities and processes, provide documentation,
communicate ideas, and emphasize important aspects of
the systems being described [2]. For example, The Unified
Modeling Language (UML) and its profile are considered
a suitable specification language for the design of systems.

In this paper, we focus on state machines, which are
considered the appropriate basis for modeling system
behavioral aspects. Besides the state-machine concept,
other models have been invented, often inspired by the
idea of states (e.g., the models used in PLC languages).
The central idea of these models is a state. The state
machine stands as the preferred model for describing
systems’ behavior [3].

1.1 State Machines

Finite-state machines (FSMs) are well-established
computational abstract devices and are used at the heart of
most digital design [4]. FSM models are widely utilized to
specify systems in such fields as sequential circuits,
distributed systems, communication networks, and
communication protocols. They can also be used to model
software systems’ behavior. A “state machine can solve a
large number of problems, among which is electronic
design automation, communication protocol design,
parsing and other engineering applications. In biology and
artificial intelligence research, state machines are
sometimes used to describe neurological systems and in
linguistics, to describe the grammars of natural languages”
[5].

In software engineering, an FSM models the behavior of a
single “object,” specifying the sequence of “events” that an
object goes through during its lifetime. It takes inputs and
produces outputs by following a set of rules determined by
the internal state of the system. Typically, “behavior”
refers to how the software will respond to external events
(sometimes called triggers). According to Wagner and

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

22

Wolstenholme [3], “Probably, the state machine is the only
known model (of the many used in software development)
that really gives a designer a chance to verify a control
system and thus, it is the only way to produce reliable
control software.”
Events trigger transitions between states. A state is
established by its relations to other states and to inputs and
outputs. A machine is in one indivisible state at a time.
The current input plus the current state determine the
following output and the machine’s next state. FSMs have
been extended by developing the so-called statecharts,
which provide the possibility to model states at multiple
hierarchical levels.

1.2 States

A state is understood as a static situation, such as waiting
for some external event to occur. When a state is entered,
it becomes active, and it becomes inactive if it is exited. In
this paper, we focus on simple states (i.e., ignoring
composite and submachine states). A state is also
described as an “abstraction of the values and links of an
object” [6]. According to Blaha and Rumbaugh [6], “sets
of values and links are grouped together into a state
according to the gross behavior of objects.” States often
correspond to verbs with an “ing” suffix (Waiting,
Dialing) or the duration of some condition (Powered,
Below Freezing). Also, events represent points in time,
and states represent intervals of time; however, according
to Blaha and Rumbaugh [6], “Of course, nothing is really
instantaneous; an event is simply an occurrence that an
application considers atomic and fleeting.” On the other
hand, some thinkers consider events subtypes of states [7].

1.3 Difficulties

Despite its wide application in hardware design, the
integration of the state machine model into a software
system is accomplished with some “new ideas or
reinventions” [3]. Some extensions and changes in the
state machine terminology have increased the difficulty of
graphical representation of state machines. According to
Wagner and Wolstenholme [3], the definition of a finite
state machine seems to “require discussion.” The concept
is still not well understood or interpreted in the software
domain despite its broad application in hardware design
[3]. Misunderstandings about state machines have
produced several stories and half-truths. The concept of
the state machine has (unintentionally?) been reinvented
for software several times [3]. According to Steward [8], a
misunderstanding of the nature of states and of their role in
causal explanation has led to a seriously distorted
understanding of states. According to Baldawa [9], “We
should bear in mind that even though state machines are
powerful tools to solve certain kinds of problems, it is not

a panacea for all your database modeling problems and not
all problems can be modeled using state machines.”

In this paper, we try to analyze critically the classic
definition of a state in state machines, utilizing the
Thinging machine (TM) model [10-11]. Conceptual
modeling includes ontological concepts such as states and
events that are used as a basis for the modeling process.
Analyzing fundamental concepts in conceptual modeling
allows us to understand more deeply the relationship
between ontological concepts and modeling frameworks.

1.3 About this paper

The next section contains a brief description of TM
modeling. In Sections 3 and 4, we project the states of an
assembly line example in a corresponding TM machine,
presenting a clear contrast between state-based behavior
modeling and the TM approach. In section 5, we analyze a
more complex system of a telephone line given in Blaha
and Rumbaugh [6].

2 Thinging Machine (TM)

TM views the world as thimacs (things/machines)
constructed from nets of subthimacs. Modeling consists of
a lower (static) structure of things that are simultaneously
machines, and both merge into a thimac. At the upper level
(dynamics), a time thimac combines with the static thimac
to generate events.

The thimac is an encapsulation of a thing that reflects the
unity and hides the thimac’s internal structure, and a
machine (see Fig. 1) shows the structural components
(static: outside of time – called region), including potential
actions of behavior. The static “thing” does not actually
exist, change, or move, but it has potentialities for these
actions when combined with time. A TM event is an
encapsulation of a region and a time.

A thimac is a thing. The thing is what can be created
(appear, observed), processed (changed), released,
transferred, and/or received. A thing is manifested (can be
recognized as a unity) and related to the “sum total” of a
thimac. The whole TM occupies a conceptual “space” that
forms a network of interrelated thimacs that together form
an organic whole.

The thimac forms a compositional structure, in which
elementary thimacs combine in systematic ways to create
compound new thimacs, allowing us to make infinite
thimacs structure. The result is compositional “world”
models built to represent things and understand their
interactions and relations. The whole is a grand
thing/machine. Thimacs can be “connected” only via flow

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

23

connections among thimacs. Therefore, things are part of
the TM static description (static model) and are part of the
dynamic model when merged with time to form events.

The thimac is also a machine that creates, processes,
releases, transfers, and/or receives. Fig. 1 shows a general
picture of a machine. The figure indicates five “seeds” of
potentialities of dynamism: creation, processing, releasing,
transferring, and receiving.

All things are created, processed, released, transferred, and
received, and all machines create, process, release, transfer,
and receive other things. Things “flow through” (denoted
by a solid arrow in Fig. 1) other machines. The thing in a
TM diagram is a presentation of any “existing” (appearing)
entity that can be “counted as one” and is coherent as a
unity.

Fig. 1 can be described in terms of the following generic
(having no more primitive action) actions:
Arrive: A thing moves to a machine.
Accept: A thing enters the machine. For simplification, we
assume that all arriving things are accepted; therefore, we
can combine the arrive and accept stages into one stage: the
receive stage.
Release: A thing is ready for transfer outside the machine.
Process: A thing is changed, handled, and examined, but no
new thing results.
Create: A new thing is “coming into being”
(found/manifested) in the machine and is realized from the
moment it arises (emergence) in a thimac. Things come
into being in the model by “being found.” The “ceasing to
be” of a thing can occur anywhere in the model and can be
represented as a freezing storage (graveyard) in the model.
Transfer: A thing is input into or output from a machine.

Additionally, the TM model includes the triggering
mechanism (denoted by a dashed arrow in this article’s
figures), which initiates a flow from one machine to
another. Multiple machines can interact with each other
through the movement of things or through triggering.
Triggering is a transformation from one series of
movements to another.

3 State-based Modeling vs. TM Modeling

In this section, we project the states of an assembly line
given by Huang [12] (Fig. 2) in a corresponding TM
machine. The resultant TM model shows that that the

model does not cover many details besides states. We
resolve this lack of details by adding possible triggers
(transitions) of the given states. The outcome is a
complicated picture of behavior. Therefore, we contrast
this state-based method with a re-modeling of the
assembly line in a TM.

According to Huang [12], a state is a unique status of a
system at a particular time. A discrete event system is a
system in which the state does not change between
consecutive events.

An approach to reduce the number of system states is to
describe components’ states instead of all of a system’s
states. Huang [12] gives an example (Fig. 2) of an
assembly line that includes two machines, M1 and M2.
Each machine has unit capacity and has a preceding buffer
with a capacity of three items. The states in this system
can be captured in four components (B1, M1, B2, and M2).
The set of all possible state values of B1 is (0, 1, 2, or 3).
Because the succeeding buffer could block M1, there are
three possible state values, (idle, busy, or blocked). M2 has
two possible state values, (idle or busy). The number of all
possible system states is 96 [12].

3.1 TM perspective of the assembly line states

Fig. 3 shows the TM model of this state-based modeling of
an assembly line. Items are received in M1 (numbers 1 and
2) to trigger incrementing (3) the number of items in B1.
We assume that initially, the number of items in B1 is zero
(4). If the number of items in B1 is greater than zero (5),
then an item is released (6) from B1 to be processed (7) in
M1. Also the number of items in B1 is decremented (8).
These processes of incrementing and decrementing trigger
the creation (9) of new values for the number of items.
When M1 receives an item from B1, it blocks any further
release (10) because it will be busy processing the received
item.

When M1 releases (11) an item, after processing it, to M2,
assuming that M2 is not blocked (12), the blocking of
further release from B1 is lifted (13), so it can check
whether B1 contains any items (14). When M2 receives
the item (15), the number of items in B2 is incremented

 Receive

Fig. 1 Thing machine.

Create

Process Accept

Transfer Release

Arrive

Output Input

Fig. 2 An example of an assembly line (From [12]).

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

24

(16). If the number of items in M2 is greater than zero (17),
an item is released from B2 to M2 (18). Also, that number
is decremented (19). These operations of incrementing and
decrementing trigger the creation of the number of items in
B2 (20). When M2 receives an item from B2, it blocks
further release (21). When M2 finishes processing the item
(22), the blocking of further reception from B2 is lifted
(23).

The situation of whether M2 is blocked with regards to
receiving further items from M1 is registered regardless of
whether the number of items in B2 reaches 3 (24). This
situation is communicated to M1 (25) and affects the
decision to send items from M1 to M2 (26 and 13).

3.2 States as TM events

An event in a TM is a subdiagram of the static model
(called the region of the event) plus a time machine. It can
endure, or it may be instantaneous. The five generic
actions form five generic events. They may be compound,
forming “higher order events” consisting of generic events
fitting together as subthimacs to produce larger thimacs.
Fig. 4 shows the event An Item has arrived to M1 and
added to B1. For simplicity, we represent an event by its
region.

According to Steward [8], events happen whereas states
obtain (or do not obtain). From the TM point of view,
obtaining is achieved as the result of the create event. In
TM, the so-called states are treated as TM events. To
support this thesis about states (model focus only), in such

a discussion, we appeal to an indication of that (states as
TM events) in some aspects of “world”-based ontology.

First, we claim that states are results of generic events
(generic actions plus time). Therefore, states are
compound events of generic events. For example,
temperature and pressure states in gases are triggered by
movements (changes in position – generic actions) of the
molecules of the gases. Thus, the events of movements of
the molecules trigger the events of changes in temperature
and pressure. Both types of events involve dynamism:
generic actions of movement and the increase/decrease
(process) in values. Even states of equilibrium in certain
chemical systems might involve the constant passage of
molecules between their liquids.

Gaseous states [8] involve the generic events (generic
actions plus time), create, process, release, transfer, and
receive, which implies that the so-called states involve
changes.

Returning to Huang’s [12] example (Fig. 3), let us locate
the assembly line states in the TM model as events. Fig. 5

 Create

Process

If not blocked

Queu

Transfer

Process If >0, then Process Incremen
decremen

Release

T
ra

ns
fe

r

No.

Create Zero >zero

R
ec

ei
ve

Queu

T
ra

ns
fe

r

Process If >0
t

Process Incremen

T
ra

ns
fe

r No.

R
ec

ei
ve

Blocked

R
el

ea
se

Process

If =3

Transfer

Process Decremen

T
ra

ns
fe

r R
ec

ei
ve

P
ro

ce
ss

R
el

ea
se

T
ra

ns
fe

r

If <3Unblocked

Store Store

T
ra

ns
fe

r

R
el

ea
se Create 0 >0

M1 M2

B1 B2

Receive

Process

Release

Transfer

1

3

2

4

5
6

7
8

9

10

12

11

13

14

15 16

20

18

19

17

21

22

23

24

25

26

Fig. 3 The TM static model of the assembly line.

Process Increment

M1

Store
B1

T
ra

ns
fe

r

R
ec

ei
ve

Time

Receive

Process

Release

Transfer

Transfer

Event
Create

Fig. 4 The event An Item has arrived to M1 and added to B1.

No. of items

Region

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

25

shows such a model built, according to Huang [12], of
states, using the static model in Fig. 3. Note that in a TM,
the so-called objects (continuants) are a type of event
(have at least the create action) (e.g., 0, 1, 2, and 3 in Fig.
5). Even though “continuants” persist through time and
exist as wholes at every moment of their existence
(starting from create), in a TM, such an existence is
divided into a sequence of events that involves processing,
releasing, transferring, and receiving. Analogously,
water’s being at 90°C, for instance, seems to be a state
which exists, as it were, in full at all times at which the
water is at that temperature [8]. In a TM, this state is
modeled as heat flows (actions) in water, and processing
that heat triggers an increase in the water temperature to
90°C. The whole event (being at 90°C) is a composite
event of generic events of continuous supplying of heat.
The state is incomplete whenever one of the generic events
(transfer/receipt of heat) is incomplete, just as a football
match is incomplete when some actions in the game stop.

To elaborate on such an issue, consider knowledge
(classical mental state) as an event when the knowledge is
permanent or long-lasting over a person’s life. Fig. 6
shows the TM model of this situation, in which the
involved events include receiving information, processing
it, storing it as knowledge, and processing stored
knowledge to be released. In a TM, creating knowledge is
the event of starting the existence of the knowledge as a
thing in the memory. This existence reflects knowledge as
a being in the model, in contrast to the general notion of
existence in the “world.” It is an event (occurrence) in the
sense that it is an announcement of the availability of
knowledge to participate in the dynamism of the world
through other events. It is an event that creates a thing.

The knowledge, after its creation, becomes a thing. This
thing is now not a continuous creation of knowledge but a
finished event. After the creation, the event-ization
finishes and thingness starts. Therefore, knowledge is not a
lifelong event; rather, it is a thing that participates in many
events whose regions include knowledge. The creation
event of a thing is a unique event that produces a thing that
“is there”; however, create-ness has finished as an event. A
thing “being there” is not a long-lasting event; rather, the
thing continued being inside other events.

Suppose that a person is born (created) but never
participates or appears in any further event (in the model).
We claim that this is not possible because a TM’s
existence implies eventi-zation. There is not a second in a
person’s life that does not involve participating in some
events (e.g., after birth, sucking milk, growing, crying).

Suppose that a thing, E1, is created, but it was not
involved in any event for a certain period, and then it
appears in an event, E2. We claim that in this
“disappearance” period, the time slice between E1 and E2,
contains all the events that are not detected because they
are not of interest/capability to/of the modeler (observer).

Fig. 6 Events of getting information, processing it, storing it as
knowledge, and processing stored knowledge to be released.

Receive

Knowledge

Process Transfer

Create

Information

R
el

ea
se

T
ra

ns
fe

r

P
ro

ce
ss

Busy

Idle

1 2 3 1 2 3 0 0

 Create

Process
If not blocked

Queue

Transfer

Process If >0, then Process Increment
decrement

Release

T
ra

ns
fe

r

No. items

Create 0 >0

R
ec

ei
ve

Queue
T

ra
ns

fe
r

Process If >0
t

Process Increment

T
ra

ns
fe

r No. items

R
ec

ei
ve

Blocked

R
el

ea
se

ProcessIf =3

Transfer

Process Decremen

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

R
el

ea
se

T
ra

ns
fe

r

If <3Unblocked

Store Store

T
ra

ns
fe

r

R
el

ea
se Create 0 >0

M1 M2

B1 B2

Receive

Process

Release

Transfer

Idle

Blocked

Busy

Fig. 5 The given states superimposed on the TM description (for simplicity, we removed some boxes).

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

26

TM existence of a thing after the creation event is its
participation in a sequence of events. Consider a very static
object, such as Cleopatra’s Needle on the Victoria Embankment
in London. According to Whitehead [13] Cleopatra’s Needle “is
a series of events. It is actively happening. It never remains the
same. A physicist who looks at that part of the life of nature as a
dance of electrons will tell you that it loses molecules and gains
others daily. Even the plain man can see that it gets dirtier and is
occasionally washed” [13]. Even knowledge in the mental
domain, after it is acquired, goes through continuous mental
events that diminish, update, or modify it.

Accordingly, we claim that there is a unique type of event, create,
that results in existence. We are developing this thesis in the
context of modeling where existence refers to being (appearance)
in the model. Therefore, a TM’s existence begs the question
“What is modeled?” A dead person (a thing) can exist in a TM if
it participates in an event such as, say, celebrating his/her
memory. Also, a round square “exists” if it is created (appears) in
the TM description (e.g., it is talked about). For example, There
being round squares is impossible [7] is modeled as the creation
of a box for impossibility and, inside it, creating a box for a
round square. To make such a subdiagram an event, it is
complemented with a thimac of “all times” (create and process
time). Additionally, such a state (of an affair) as Abdul-Jabbar’s
being more than seven feet tall is a creation event that occurs at a
certain point in Abdul-Jabbar’s life. Many events occur for him
during his life. However, these events are not things that hang
from him as leaves attached to a tree; rather, whenever his height
participates in a future event, it flows (transfer, receive) from the
creation event to the new event. The new event “constructs”
Abdul-Jabbar by importing continuing “attributes” from previous
events. We will apply this claim that the state is a type of event in
Huang’s [12] assembly line example.

 3.3 Projection States as events

Returning to Fig. 5, which shows states projected [12] over
the TM model, we note that the diagram is missing many TM
details. In a state machine, more details can be specified as
triggers of the states. Fig. 7 identifies possible triggers of states.
The resultant diagram of the whole approach of identifying states
and triggers seems to produce an unsystematic way to specify the
assembly line’s behavior. It seems that there is no reason for this
top-down process that starts from compound events given as

states and triggers. A simpler approach is to construct the TM
diagram from scratch, identify a suitable set of events, and
specify the behavior as a chronology of these events.
To illustrate such an approach, consider the simple state machine
of a door given by Sparx [14] and shown in Fig. 8. First, the door
is described in terms of a situation (state) with an initial state and
create trigger. Then Close/[doorWay->is Empty] and Open/ are
used to described the changes in the door’s position.
Alternatively, Fig. 9 shows the TM static description of a door.

The diagram reflects the intuitive idea of events as the
door moves between two positions; therefore, as Fig. 10
shows, there are two events, closed and open, and two
changing events, opening and closing. Fig. 11 shows the
corresponding behavioral model. The TM model seems
simpler than the state diagram, but it is richer in semantics.

Fig. 8 An example of a state machine (partial, from [14]).

Receive

Release

Position 1 Position 2

Release

Receive Transfer Transfer

Transfer Transfer

Door Create Create

Fig. 9 Static TM model of the door.

Fig. 10 Dynamic TM model of the door.

Receive

Release

Closed

Position 2

Release

Receive Transfer Transfer

Transfer Transfer

Door Create Create

Open Opening

Closing

Position 1

Closed Open

Opening

Closing

Fig. 11 The behavioral model.

Fig. 7 The given states with triggers.

T5

Busy

Idle

1 2 3 1 2 3 0 0

 Create

Process
If not blocked

Queue

Transfer

Process If >0 then Process Increment
decrement

Release

T
ra

ns
fe

r

No. items

Create 0 >0

R
ec

ei
ve

Queue

T
ra

ns
fe

Process If >0

Process Increment

T
ra

ns
fe

r No. items

R
ec

ei
ve

Blocked

R
el

ea
se

ProcessIf =3

Transfer

Process Decremen

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

R
el

ea
se

T
ra

ns
fe

r

If <3Unblocked

Store Store

T
ra

ns
fe

r

R
el

ea
se

Create 0 >0

M1
M2

B1 B2

Receive

Process
Release

Transfer

Idle

Blocked

T1

T4
T6

Busy
T7

T2

T8

T9

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

27

4 TM model of the assembly line

4.1 The static model

Fig. 12 shows a fresh start to model the assembly line
example. First, an item is received in M1 (number 1). The
number of items in B1 is incremented (2). The number of
items in B1 is checked.

- If it is 3, then no additional item is accepted in
M1 (3).

- If it is greater than 0 (4), then an item is released
to M1 (this happens automatically because M1 is
initially idle; later, M1 will trigger this action),
the number of items in the queue is decremented
(5), and accepting an item from the outside is
activated (6).

Accordingly, an item moves from B1 to M1 (7 and 8) and
processed (9). If M1 is not blocked, (10) flows to M2 (11).
The number of items in B2 is incremented (12). If the
number of items in B2 is 3, then M2 is blocked (13);
otherwise, it is unblocked. If the number of items in B2 is
>0 (14), then an item is sent to M2 (15) and the number of
items in B2 is decremented (16). The received item is
processed and leaves M2 (17).

4.2 The Events model

Accordingly, Fig. 13 shows the set of events superimposed
on the static model as follows:

E1: A new item enters M1, and the number of items is

incremented in B1.
E2: The number of item in B1 reaches 3, so further

acceptance of items is blocked.
E2: If the number of items in B1 is greater than zero, send

an item to M1.
E4: Decrement the number of items and accept further

items in B1.
E5: An item flows from B1 to M1.
E6: An item is processed in M1.
E7: M2 is not blocked.
E8: If M2 is not blocked, then send the processed item

from M1 to M2.
E9: Increment the number of items in B2.
E10: If the number of items in B2 is 3, then block M2

from accepting an item from M1; otherwise, unblock
it.

 Create

Process
If not blocked

Queue

Transfer

Process

If =3 then

Process

Increment

Decremen

Release

T
ra

ns
fe

r

No. items

R
ec

ei
ve

Queue

T
ra

ns
fe

r

Process If >0
t

Process Increment

T
ra

ns
fe

r No. items

R
ec

ei
ve

Blocked

R
el

ea
se

ProcessIf =3

Transfer

Process Decremen

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

R
el

ea
se

T
ra

ns
fe

r

If <3Unblocked

Store Store

T
ra

ns
fe

r
R

el
ea

se

M1
M2

B1 B2

Receive

Process

Release

Transfer

E1 E3

E5

E8

E7

E9

E10

If >0 then
and

Not accept

Accept

E2

E4
E6

E11

E12

E13

Fig. 13 The TM events model of the assembly line.

Fig. 12 The TM static model of the assembly line.

R
ec

ei
ve

 Create

Process
If not blocked

Queue

Transfer

Process

If =3 then

Process

Increment

Decremen

Release

No. items

Queue T
ra

ns
fe

r

Process If >0
t

Process Increment

T
ra

ns
fe

r No. items

R
ec

ei
ve

Blocked ProcessIf =3

Transfer

Process Decremen

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

R
el

ea
se

T
ra

ns
fe

r

If <3
Unblocked

Store Store

T
ra

ns
fe

r

R
el

ea
se

Create 0 >0

M1 M2

B1

Receive

Process

Release

Transfer

If >0 then
and

Not
accept

Accept

98

7

6
5

4
3

2

1

10

17

16

15

1414

13

12

11

T
ra

ns
fe

r

R
el

ea
se

B2

1

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

28

E11: If the number of items in B2 is greater than zero, then

decrement the number of items.
E12: Send an item from B2 to M2.
E13: Process an item in T2 and release it when finished

processing.
Fig. 14 shows the behavioral model of the assembly line.
The model represents the chronology of events and stands
as the controlling module of the assembly line system.

Suppose that S1 stands for an input item to the assembly
line. Fig. 15 shows a sample sequence of events, in which

- it is assumed, initially, that B1 and B2 contain
zero items and M1 and M2 are unblocked and
idle,

- bookkeeping events (e.g., E3 and E4) are shown
only when they are applicable,

- all events have the same time duration, and
- we assume priority of events from left to right.

5. Another example of TM Modeling

We noted previously that that the TM model includes more
details than are necessary to produce an accurate basic
model. Of course, in general, such details come with the
cost of having a more complex model system. However,
we think that TM modeling has appropriate level of detail
because it is constructed from one category: the thimac.
The thimac includes five actions, flows and trigger that are
applied repeatedly while a high level abstraction is
preserved. Additionally, the TM modeling seems more
complete than a state machine because it starts with a
static model, then includes an events model, and last, the
behavioral model
To emphasize such a thesis, we analyze in this section a
more complex system than the one in the previous section.

Consider the state machine given in the classical book
Object-Oriented Modeling and Design with UML [6] in
Fig. 16. The state diagram is for a telephone line.
According to Blaha and Rumbaugh [6], the diagram
concerns a phone line and not the caller or the callee. It
contains sequences associated with normal calls as well as
some abnormal sequences, such as timing out while
dialing or getting a busy signal.

E7

E1 E2 E3

E4
E8E5

E10

E11 E9E6 E12 E13

Fig. 14 The TM behavioral model of the assembly line.

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 19
E1: S1
arrives to
M1

E1: S2
arrives to
M1

E1: S3
arrives to
M1

E1: S4
arrives to
M1

E2: Block
arrivals to
M1

E4:
Unblock
arrivals
to M1

E5: S2 is
sent from
B1 to M1

E6: S2 is
processed

E8: S2 is
sent to
from M1
to M2

E12: S2 is
sent from
B2 to M2

 E5: S1 is
sent from
B1 to M1

E6: S1 is
processed

E8: S1 is
sent to
from M1
to M2

E12: S1 is
sent from
B2 to M2

E13: S1
leaves
M2

E1: S5
arrives to
M1

E2: Block
arrivals to
M1

 E4:
Unblock
arrivals to
M1

Fig. 15 Sample partial run of the behavioral model.

Fig. 16 State diagram for phone line with activities (From [6]).

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

29

According to Blaha and Rumbaugh [6], “At the start of a
call, the telephone line is idle. When the phone is removed
from the hook, it emits a dial tone and can accept the
dialing of digits. Upon entry of a valid number, the phone
system tries to connect the call and route it to the proper
destination. The connection can fail if the number or trunk
are busy. If the connection is successful, the called phone
begins ringing. If the called party answers the phone, a
conversation can occur. When the called party hangs up,
the phone disconnects and reverts to idle when put on
hook again” [6].

5.1 TM Static Model

Fig. 17 shows the TM model of this phone line. When the
phone is lifted from the hook (1), a signal is created (2)
and omitted (for simplification, we do not show the flow
of this signal).

This signal triggers the following initialization;
- A dial tone (3) that indicates acceptance of the dialing

of digits.
- The number of digits is initializing to zero (4).
- The dialed number is initialized to blank (5).
- Timing is set on (6).
Accordingly, with each created digit (7) by the user,
- the number of dialed digits is incremented (8),
- the timing is reset (9), and
- the input digit to construct the dialed number (10) is

sent.
The number of dialed digits is examined (11), and
- if it is less than n, then this triggers expecting

additional digit input (13);
- if it is = n, then the input number is processed (14),

and if it is valid (15), a connection is requested from
the other side (16).

Telephone

Digit

Create

Number

Response

ReceiveTransfer

Microphone
t

Transfer ProcessReceive

Speaker (voice)
t

Create

Hook

Create
zero

Create: blank

Transfer

Transfer Release

Process

Disconnect
Busy Ringing

Release

 Dialing tone
Release TransferCreate

Process
 If less n

 Recorded message

Release Transfer Create

Process

Invalid

 Connection request
tRelease TransferCreate

Valid If n

Process:
Increment

Process:
Concatenate

Current

No. digits

 Create

Process:
If out of time

Warning

Release

Transfer

Create

ON

OFF

OUT

OUT OUT

OUT

OUT

Other
telephone

Other
telephone

OUTRelease TransferCreate

 Busy tune

Release Transfer Create

 Ringing tune

Release Transfer Create

Connected

1
Lift

phone

T
ra

ns
fe

r

R
el

ea
se

 Create

Start signal

2 3

4

5

6
7

8

9
10 11

12

13
14

15

16

17

18

19

20

21 22

23
24

25

26

27

27

Fig. 17 The static TM representation of the phone line.

R
ec

ei
ve

Phone
Put 0n

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

30

- If the number is not valid (17), a recorded message is

output (18) and the system is initialized again to
accept the dialing of digits (see initialization above).

The other side of the line sends a response (20).
- If it is a connected response (21), it is sent to the

speaker (22).
- If it is a ringing tone (23), a ringing tone is produced

on the speaker (24).
- If it is busy or disconnected, a busy sound (25) is

produced and sent to the speaker (26).

Meanwhile, during the connection, the user sound is
captured by the microphone and sent to the other side.
Additionally, when time expires (27), a warning time is
output.

5.2 Projecting States over the TM model

If we project Blaha and Rumbaugh’s [6] states over the
TM representation of the phone line, we end up with many
details the state diagram does not include. To save space,
Fig. 18 shows projecting the state of a dial tone, which
includes many initializations when the phone is removed
from the hook. Applying triggers would produce very a
messy diagram.

5.3 Events model

Fig. 19 shows the events model of the phone line. To save
space, we will not list these events here. Some of Blaha
and Rumbaugh’s [6] states coincide with the selected
events in Fig. 19. Fig. 20 shows the behavioral model.

6. Conclusion

We have critically analyzed the notion of a state in
conceptual modeling utilizing the thinging machine model.
In a TM, a state is defined as a type of an event. In two case
studies, we contrast the state-based method with the
corresponding TM model. The TM model is more complete
than the state-based model because it starts with a static
model, followed by an events model to construct a
behavioral model. The TM notion of events is well defined
in comparison to the state-based model because
- things/machines form thimacs;
- machines have the five-action structure;
- machines create, process, release, transfer, and receive

things;
- things are what can be created, processed, released,

transferred, and/or received;
- things denote the wholeness of the thimac;
- events are static thimacs with time;
- behavior is the chronology of events; and
- a single static TM model leads to an event model,

which in turn results in a behavioral model using the
same modeling notations.

Contrasting this with the numerous notations of state charts
and other UML heterogeneous multigraphs, we observe
that integrating state machines with other types of UML
diagrams is difficult.

Nevertheless, this paper is a work in progress that requires
further investigation, specifically experimentation with
more state machines of various types. This investigation
could also be supplemented with philosophical issues
related to states, events, facts, and propositions, which we
will do in future research.

Dial tone

Telephon

Numbe

Hook

Create
zero

Create: blank

 Dialing tone
Release TransfeCreate

Process:
IncremenCurrent

No. digits

 Create

Process:
If out of time

Warning

Release

Transfe

Create
OFF

OUT

OUT OUT

OUT

1

Lift
phone

T
ra

ns
fe

r R
el

ea
se

 Create

Start
signal 2

3

4

5

6
8

27

R
ec

ei
ve

Phone Put
0n

Fig. 18 Partial view of the static model of the phone line showing the part that represents the state Dial tone.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

31

Telephone

Digit

Create

Number

Response

Receive Transfer

Microphone
t

Transfer Process Receive

Speaker (voice)
t

Create

Hook

Create
zero

Create: blank

Transfer

Transfer Release

Process

Disconnect
Busy Ringing

Release

 Dialing tone
Release TransferCreate

Process
 If less n

 Recorded message

Release Transfer Create

Process

Invalid

 Connection request
tRelease TransferCreate

Valid If n

Process:
Increment

Process:
Concatenate

Current

No. digits

 Create

Process:
If out of time

Warning

Release

Transfer

Create

ON

OFF

OUT

OUT OUT

OUT

OUT

Other
telephone

Other
telephone

OUTRelease TransferCreate

 Busy tune

Release Transfer Create

 Ringing tune

Release Transfer Create

Connected

Lift
phone

T
ra

ns
fe

r

R
el

ea
se

 Create

Start signal

Fig. 19 The events TM representation of the phone line.

R
ec

ei
ve

Phone
Put 0n

E2

E1

E3

E4

E5
E6 E7

E8
E9 E10

E11 E12

E13

E14

E15

E15
E1 E2

E3 E4

E5
E6

E7

E8

E9 E10

E11

E12
E13

E14

E14

Fig. 20 The behavioral TM representation of the phone line.

IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023

32

References

[1] Bringsjord, S.: Philosophical engineering: Some

reflections. In: WPE-2007 Workshop on Philosophy
and Engineering, Technical University- Delft,
Netherlands, October 29-31, 2007

[2] Buede, D.M.: The Engineering Design of Systems:
Models and Methods. John Wiley and Sons (2000)

[3] Wagner, F., Wolstenholme, P.: Misunderstandings
About State Machines. IEE Computing & Control
Engineering 15(4):40- 45 (2004). DOI:
10.1049/cce:20040413

[4] Wilson, P., Mantooth, H.A.: Chapter 6 - Block
Diagram Modeling and System Analysis, Model-
Based Engineering for Complex Electronic Systems,
pp. 169–196. Publisher Newnes, Oxford, U. K. (2013).
DOI: 10.1016/C2010-0-64918-2 DOI: 10.1016/B978-
0-12-385085-0.00006-3

[5] Obota M.E., Ukwa C.N., Ona D.I.: Modeling &
Control of Event Based Behaviour Using State
Machines. The International Journal Of Engineering
And Science 3(5), 54–58 (2014)

[6] Blaha, H., Rumbaugh, J.: Object-Oriented Modeling
and Design with UML, 2nd ed. Pearson Prentice Hall,
Upper Saddle River (2005)

[7] Chisholm, R.: Person and Object: A Metaphysical
Study. Open Court Publishing Company, LaSalle
(1976)

[8] Steward, H.: The Ontology of Mind Events, Processes,
and States. Oxford University Press, Oxford (2011).
10.1093/acprof:oso/9780198250647.001.0001

[9] Baldawa, D.: Writing Maintainable Code Using State
Machines in Python. Zeolearn (2018).
https://www.zeolearn.com/magazine/writing-
maintainable-code-using-sate-machines-in-python

[10] Al-Fedaghi, S.: Change in Conceptual Modeling and
Systems Reconfiguration. International Journal of
Computer Science and Network Security 22(4), 481–
490 (2022). DOI: 10.22937/IJCSNS.2022.22.4.57

[11] Al-Fedaghi, S.: Conceptual Modeling of Events Based
on One-Category Ontology. International Journal of
Computer Science and Network Security 22(3), 425–
436 (2022). doi.org/10.22937/IJCSNS.2022.22.3.54

[12] Huang C-C.: Discrete Event System Modeling Using
Sysml and Model Transformation. Thesis of Doctor of
Philosophy in the School of Industrial and Systems
Engineering, Georgia Institute of Technology (2011).
https://smartech.gatech.edu/bitstream/handle/1853/45
830/Huang_ChienChung_201112_phd.pdf

[13] Whitehead, A.N.: Adventures of Ideas. Free Press,
New York (1967)

[14] Sparx Systems Pty Ltd., UML 2 Tutorial - State
Machine Diagram (2022).
https://sparxsystems.com/resources/tutorials/uml2/stat
e-diagram.html

Sabah S. Al-Fedaghi is an associate
 professor in the Department of Computer
 Engineering at Kuwait University. He
holds an MS and a PhD from the
Department of Electrical Engineering and
Computer Science, Northwestern
University, Evanston, Illinois, and a BS

from Arizona State University. He has published many
journal articles and papers in conferences on software
engineering, database systems, information ethics, privacy,
and security. He headed the Electrical and Computer
Engineering Department (1991–1994) and the Computer
Engineering Department (2000–2007). He previously
worked as a programmer at the Kuwait Oil Company. Dr.
Al-Fedaghi has retired from the services of Kuwait
University on June 2021. He is currently (Fall 2021/2022)
seconded to teach in the department of computer
engineering, Kuwait University.

