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Summary 
The design of complex man-made systems mostly involves 
a conceptual modeling phase; therefore, it is important to 
ensure an appropriate analysis method for these models. A 
key concept for such analysis is the development of a 
diagramming technique (e.g., UML) because diagrams can 
describe entities and processes and emphasize important 
aspects of the systems being described. The analysis also 
includes an examination of ontological concepts such as 
states and events, which are used as a basis for the 
modeling process. Studying fundamental concepts allows 
us to understand more deeply the relationship between 
these concepts and modeling frameworks. In this paper, we 
critically analyze the classic definition of a state utilizing 
the Thinging machine (TM) model. States in state machine 
diagrams are considered the appropriate basis for modeling 
system behavioral aspects. Despite its wide application in 
hardware design, the integration of a state machine model 
into a software system’s modeling requirements increased 
the difficulty of graphical representation (e.g., integration 
between structural and behavioral diagrams). To 
understand such a problem, in this paper, we project (create 
an equivalent representation of) states in TM machines. As 
a case study, we re-modeled a state machine of an assembly 
line system in a TM. Additionally, we added possible 
triggers (transitions) of the given states to the TM 
representation. The outcome is a complicated picture of 
assembly line behavior. Therefore, as an alternative 
solution, we re-modeled the assembly line based solely on 
the TM. This new model presents a clear contrast between 
state-based modeling of assembly line behavior and the TM 
approach. The TM modeling seems more systematic than 
its counterpart, the state machine, and its notions are well 
defined. In a TM, states are just compound events. A model 
of a more complex system than the one in the assembly line 
has strengthened such a conclusion. 
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1. Introduction 

The design of complex man-made systems mostly 
involves a modeling phase; therefore, it is important to 
ensure an appropriate analysis (understand, design, and 
evaluate) method for these models and their fundamental 

concepts. The analysis can be viewed as including 
software engineering and philosophy simultaneously [1].  
 
 
 
A key concept for such analysis is the development of a 
diagramming technique because diagrams can describe 
entities and processes, provide documentation, 
communicate ideas, and emphasize important aspects of 
the systems being described [2]. For example, The Unified 
Modeling Language (UML) and its profile are considered 
a suitable specification language for the design of systems. 
 
In this paper, we focus on state machines, which are 
considered the appropriate basis for modeling system 
behavioral aspects. Besides the state-machine concept, 
other models have been invented, often inspired by the 
idea of states (e.g., the models used in PLC languages). 
The central idea of these models is a state. The state 
machine stands as the preferred model for describing 
systems’ behavior [3]. 
 
1.1 State Machines  
 
Finite-state machines (FSMs) are well-established 
computational abstract devices and are used at the heart of 
most digital design [4]. FSM models are widely utilized to 
specify systems in such fields as sequential circuits, 
distributed systems, communication networks, and 
communication protocols. They can also be used to model 
software systems’ behavior. A “state machine can solve a 
large number of problems, among which is electronic 
design automation, communication protocol design, 
parsing and other engineering applications. In biology and 
artificial intelligence research, state machines are 
sometimes used to describe neurological systems and in 
linguistics, to describe the grammars of natural languages” 
[5].  
 
In software engineering, an FSM models the behavior of a 
single “object,” specifying the sequence of “events” that an 
object goes through during its lifetime. It takes inputs and 
produces outputs by following a set of rules determined by 
the internal state of the system. Typically, “behavior” 
refers to how the software will respond to external events 
(sometimes called triggers). According to Wagner and 
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Wolstenholme [3], “Probably, the state machine is the only 
known model (of the many used in software development) 
that really gives a designer a chance to verify a control 
system and thus, it is the only way to produce reliable 
control software.”  
Events trigger transitions between states. A state is 
established by its relations to other states and to inputs and 
outputs. A machine is in one indivisible state at a time. 
The current input plus the current state determine the 
following output and the machine’s next state. FSMs have 
been extended by developing the so-called statecharts, 
which provide the possibility to model states at multiple 
hierarchical levels. 
 
1.2 States 
 
A state is understood as a static situation, such as waiting 
for some external event to occur. When a state is entered, 
it becomes active, and it becomes inactive if it is exited. In 
this paper, we focus on simple states (i.e., ignoring 
composite and submachine states). A state is also 
described as an “abstraction of the values and links of an 
object” [6]. According to Blaha and Rumbaugh [6], “sets 
of values and links are grouped together into a state 
according to the gross behavior of objects.” States often 
correspond to verbs with an “ing” suffix (Waiting, 
Dialing) or the duration of some condition (Powered, 
Below Freezing). Also, events represent points in time, 
and states represent intervals of time; however, according 
to Blaha and Rumbaugh [6], “Of course, nothing is really 
instantaneous; an event is simply an occurrence that an 
application considers atomic and fleeting.” On the other 
hand, some thinkers consider events subtypes of states [7]. 
 
1.3 Difficulties 
 
Despite its wide application in hardware design, the 
integration of the state machine model into a software 
system is accomplished with some “new ideas or 
reinventions” [3]. Some extensions and changes in the 
state machine terminology have increased the difficulty of 
graphical representation of state machines. According to 
Wagner and Wolstenholme [3], the definition of a finite 
state machine seems to “require discussion.” The concept 
is still not well understood or interpreted in the software 
domain despite its broad application in hardware design 
[3]. Misunderstandings about state machines have 
produced several stories and half-truths. The concept of 
the state machine has (unintentionally?) been reinvented 
for software several times [3]. According to Steward [8], a 
misunderstanding of the nature of states and of their role in 
causal explanation has led to a seriously distorted 
understanding of states. According to Baldawa [9], “We 
should bear in mind that even though state machines are 
powerful tools to solve certain kinds of problems, it is not 

a panacea for all your database modeling problems and not 
all problems can be modeled using state machines.” 
 
In this paper, we try to analyze critically the classic 
definition of a state in state machines, utilizing the 
Thinging machine (TM) model [10-11]. Conceptual 
modeling includes ontological concepts such as states and 
events that are used as a basis for the modeling process. 
Analyzing fundamental concepts in conceptual modeling 
allows us to understand more deeply the relationship 
between ontological concepts and modeling frameworks.  
 
1.3 About this paper 
 
The next section contains a brief description of TM 
modeling. In Sections 3 and 4, we project the states of an 
assembly line example in a corresponding TM machine, 
presenting a clear contrast between state-based behavior 
modeling and the TM approach. In section 5, we analyze a 
more complex system of a telephone line given in Blaha 
and Rumbaugh [6]. 
 
2  Thinging Machine (TM) 

TM views the world as thimacs (things/machines) 
constructed from nets of subthimacs. Modeling consists of 
a lower (static) structure of things that are simultaneously 
machines, and both merge into a thimac. At the upper level 
(dynamics), a time thimac combines with the static thimac 
to generate events. 
 
The thimac is an encapsulation of a thing that reflects the 
unity and hides the thimac’s internal structure, and a 
machine (see Fig. 1) shows the structural components 
(static: outside of time – called region), including potential 
actions of behavior. The static “thing” does not actually 
exist, change, or move, but it has potentialities for these 
actions when combined with time. A TM event is an 
encapsulation of a region and a time.  
 
A thimac is a thing. The thing is what can be created 
(appear, observed), processed (changed), released, 
transferred, and/or received. A thing is manifested (can be 
recognized as a unity) and related to the “sum total” of a 
thimac. The whole TM occupies a conceptual “space” that 
forms a network of interrelated thimacs that together form 
an organic whole.  
 
The thimac forms a compositional structure, in which 
elementary thimacs combine in systematic ways to create 
compound new thimacs, allowing us to make infinite 
thimacs structure. The result is compositional “world” 
models built to represent things and understand their 
interactions and relations. The whole is a grand 
thing/machine. Thimacs can be “connected” only via flow 
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connections among thimacs. Therefore, things are part of 
the TM static description (static model) and are part of the 
dynamic model when merged with time to form events.  
 
The thimac is also a machine that creates, processes, 
releases, transfers, and/or receives. Fig. 1 shows a general 
picture of a machine. The figure indicates five “seeds” of 
potentialities of dynamism: creation, processing, releasing, 
transferring, and receiving.  
 
 
 
 
 
 
 
 
 
All things are created, processed, released, transferred, and 
received, and all machines create, process, release, transfer, 
and receive other things. Things “flow through” (denoted 
by a solid arrow in Fig. 1) other machines. The thing in a 
TM diagram is a presentation of any “existing” (appearing) 
entity that can be “counted as one” and is coherent as a 
unity.  
 
Fig. 1 can be described in terms of the following generic 
(having no more primitive action) actions: 
Arrive: A thing moves to a machine. 
Accept: A thing enters the machine. For simplification, we 
assume that all arriving things are accepted; therefore, we 
can combine the arrive and accept stages into one stage: the 
receive stage. 
Release: A thing is ready for transfer outside the machine. 
Process: A thing is changed, handled, and examined, but no 
new thing results. 
Create: A new thing is “coming into being” 
(found/manifested) in the machine and is realized from the 
moment it arises (emergence) in a thimac. Things come 
into being in the model by “being found.” The “ceasing to 
be” of a thing can occur anywhere in the model and can be 
represented as a freezing storage (graveyard) in the model. 
Transfer: A thing is input into or output from a machine. 

Additionally, the TM model includes the triggering 
mechanism (denoted by a dashed arrow in this article’s 
figures), which initiates a flow from one machine to 
another. Multiple machines can interact with each other 
through the movement of things or through triggering. 
Triggering is a transformation from one series of 
movements to another. 
 
3 State-based Modeling vs. TM Modeling 

In this section, we project the states of an assembly line 
given by Huang [12] (Fig. 2) in a corresponding TM 
machine. The resultant TM model shows that that the 

model does not cover many details besides states. We 
resolve this lack of details by adding possible triggers 
(transitions) of the given states. The outcome is a 
complicated picture of behavior. Therefore, we contrast 
this state-based method with a re-modeling of the 
assembly line in a TM.  
 
According to Huang [12], a state is a unique status of a 
system at a particular time. A discrete event system is a 
system in which the state does not change between 
consecutive events.  
 
 
 
 
 
 
 
 
 
 
 
An approach to reduce the number of system states is to 
describe components’ states instead of all of a system’s 
states. Huang [12] gives an example (Fig. 2) of an 
assembly line that includes two machines, M1 and M2. 
Each machine has unit capacity and has a preceding buffer 
with a capacity of three items. The states in this system 
can be captured in four components (B1, M1, B2, and M2). 
The set of all possible state values of B1 is (0, 1, 2, or 3). 
Because the succeeding buffer could block M1, there are 
three possible state values, (idle, busy, or blocked). M2 has 
two possible state values, (idle or busy). The number of all 
possible system states is 96 [12]. 
 
3.1 TM perspective of the assembly line states 

 
Fig. 3 shows the TM model of this state-based modeling of 
an assembly line. Items are received in M1 (numbers 1 and 
2) to trigger incrementing (3) the number of items in B1. 
We assume that initially, the number of items in B1 is zero 
(4). If the number of items in B1 is greater than zero (5), 
then an item is released (6) from B1 to be processed (7) in 
M1. Also the number of items in B1 is decremented (8). 
These processes of incrementing and decrementing trigger 
the creation (9) of new values for the number of items. 
When M1 receives an item from B1, it blocks any further 
release (10) because it will be busy processing the received 
item.  
 
When M1 releases (11) an item, after processing it, to M2, 
assuming that M2 is not blocked (12), the blocking of 
further release from B1 is lifted (13), so it can check 
whether B1 contains any items (14). When M2 receives 
the item (15), the number of items in B2 is incremented 

 Receive 

 

Fig. 1 Thing machine. 

Create 

Process Accept 

Transfer Release 

Arrive 

Output Input

Fig. 2 An example of an assembly line (From [12]). 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

24

 

(16). If the number of items in M2 is greater than zero (17), 
an item is released from B2 to M2 (18). Also, that number 
is decremented (19). These operations of incrementing and 
decrementing trigger the creation of the number of items in 
B2 (20). When M2 receives an item from B2, it blocks 
further release (21). When M2 finishes processing the item 
(22), the blocking of further reception from B2 is lifted 
(23). 

 
The situation of whether M2 is blocked with regards to 
receiving further items from M1 is registered regardless of 
whether the number of items in B2 reaches 3 (24). This 
situation is communicated to M1 (25) and affects the 
decision to send items from M1 to M2 (26 and 13).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 States as TM events 
 
An event in a TM is a subdiagram of the static model 
(called the region of the event) plus a time machine. It can 
endure, or it may be instantaneous. The five generic 
actions form five generic events. They may be compound, 
forming “higher order events” consisting of generic events 
fitting together as subthimacs to produce larger thimacs. 
Fig. 4 shows the event An Item has arrived to M1 and 
added to B1. For simplicity, we represent an event by its 
region.  
 
According to Steward [8], events happen whereas states 
obtain (or do not obtain). From the TM point of view, 
obtaining is achieved as the result of the create event. In 
TM, the so-called states are treated as TM events. To 
support this thesis about states (model focus only), in such 

a discussion, we appeal to an indication of that (states as 
TM events) in some aspects of “world”-based ontology.  
 
First, we claim that states are results of generic events 
(generic actions plus time). Therefore, states are 
compound events of generic events. For example, 
temperature and pressure states in gases are triggered by 
movements (changes in position – generic actions) of the 
molecules of the gases. Thus, the events of movements of 
the molecules trigger the events of changes in temperature 
and pressure. Both types of events involve dynamism: 
generic actions of movement and the increase/decrease 
(process) in values. Even states of equilibrium in certain 
chemical systems might involve the constant passage of 
molecules between their liquids.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Gaseous states [8] involve the generic events (generic 
actions plus time), create, process, release, transfer, and 
receive, which implies that the so-called states involve 
changes.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Returning to Huang’s [12] example (Fig. 3), let us locate 
the assembly line states in the TM model as events. Fig. 5 
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Fig. 3 The TM static model of the assembly line. 
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shows such a model built, according to Huang [12], of 
states, using the static model in Fig. 3. Note that in a TM, 
the so-called objects (continuants) are a type of event 
(have at least the create action) (e.g., 0, 1, 2, and 3 in Fig. 
5). Even though “continuants” persist through time and 
exist as wholes at every moment of their existence 
(starting from create), in a TM, such an existence is 
divided into a sequence of events that involves processing, 
releasing, transferring, and receiving. Analogously, 
water’s being at 90°C, for instance, seems to be a state 
which exists, as it were, in full at all times at which the 
water is at that temperature [8]. In a TM, this state is 
modeled as heat flows (actions) in water, and processing 
that heat triggers an increase in the water temperature to 
90°C. The whole event (being at 90°C) is a composite 
event of generic events of continuous supplying of heat. 
The state is incomplete whenever one of the generic events 
(transfer/receipt of heat) is incomplete, just as a football 
match is incomplete when some actions in the game stop. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To elaborate on such an issue, consider knowledge 
(classical mental state) as an event when the knowledge is 
permanent or long-lasting over a person’s life. Fig. 6 
shows the TM model of this situation, in which the 
involved events include receiving information, processing 
it, storing it as knowledge, and processing stored 
knowledge to be released. In a TM, creating knowledge is 
the event of starting the existence of the knowledge as a 
thing in the memory. This existence reflects knowledge as 
a being in the model, in contrast to the general notion of 
existence in the “world.” It is an event (occurrence) in the 
sense that it is an announcement of the availability of 
knowledge to participate in the dynamism of the world 
through other events. It is an event that creates a thing. 

 
The knowledge, after its creation, becomes a thing. This 
thing is now not a continuous creation of knowledge but a 
finished event. After the creation, the event-ization 
finishes and thingness starts. Therefore, knowledge is not a 
lifelong event; rather, it is a thing that participates in many 
events whose regions include knowledge. The creation 
event of a thing is a unique event that produces a thing that 
“is there”; however, create-ness has finished as an event. A 
thing “being there” is not a long-lasting event; rather, the 
thing continued being inside other events.  
 
Suppose that a person is born (created) but never 
participates or appears in any further event (in the model). 
We claim that this is not possible because a TM’s 
existence implies eventi-zation. There is not a second in a 
person’s life that does not involve participating in some 
events (e.g., after birth, sucking milk, growing, crying).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Suppose that a thing, E1, is created, but it was not 
involved in any event for a certain period, and then it 
appears in an event, E2. We claim that in this 
“disappearance” period, the time slice between E1 and E2, 
contains all the events that are not detected because they 
are not of interest/capability to/of the modeler (observer). 
 
 
 
 
 
 
 
 
 

 
 

 

 

Fig. 6 Events of getting information, processing it, storing it as 
knowledge, and processing stored knowledge to be released.  
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TM existence of a thing after the creation event is its 
participation in a sequence of events. Consider a very static 
object, such as Cleopatra’s Needle on the Victoria Embankment 
in London. According to Whitehead [13] Cleopatra’s Needle “is 
a series of events. It is actively happening. It never remains the 
same. A physicist who looks at that part of the life of nature as a 
dance of electrons will tell you that it loses molecules and gains 
others daily. Even the plain man can see that it gets dirtier and is 
occasionally washed” [13]. Even knowledge in the mental 
domain, after it is acquired, goes through continuous mental 
events that diminish, update, or modify it.  
 
Accordingly, we claim that there is a unique type of event, create, 
that results in existence. We are developing this thesis in the 
context of modeling where existence refers to being (appearance) 
in the model. Therefore, a TM’s existence begs the question 
“What is modeled?” A dead person (a thing) can exist in a TM if 
it participates in an event such as, say, celebrating his/her 
memory. Also, a round square “exists” if it is created (appears) in 
the TM description (e.g., it is talked about). For example, There 
being round squares is impossible [7] is modeled as the creation 
of a box for impossibility and, inside it, creating a box for a 
round square. To make such a subdiagram an event, it is 
complemented with a thimac of “all times” (create and process 
time). Additionally, such a state (of an affair) as Abdul-Jabbar’s 
being more than seven feet tall is a creation event that occurs at a 
certain point in Abdul-Jabbar’s life. Many events occur for him 
during his life. However, these events are not things that hang 
from him as leaves attached to a tree; rather, whenever his height 
participates in a future event, it flows (transfer, receive) from the 
creation event to the new event. The new event “constructs” 
Abdul-Jabbar by importing continuing “attributes” from previous 
events. We will apply this claim that the state is a type of event in 
Huang’s [12] assembly line example. 
 
 3.3 Projection States as events 
 

Returning to Fig. 5, which shows states projected [12] over 
the TM model, we note that the diagram is missing many TM 
details. In a state machine, more details can be specified as 
triggers of the states. Fig. 7 identifies possible triggers of states. 
The resultant diagram of the whole approach of identifying states 
and triggers seems to produce an unsystematic way to specify the 
assembly line’s behavior. It seems that there is no reason for this 
top-down process that starts from compound events given as 

states and triggers. A simpler approach is to construct the TM 
diagram from scratch, identify a suitable set of events, and 
specify the behavior as a chronology of these events.  
To illustrate such an approach, consider the simple state machine 
of a door given by Sparx [14] and shown in Fig. 8. First, the door 
is described in terms of a situation (state) with an initial state and 
create trigger. Then Close/[doorWay->is Empty] and Open/ are 
used to described the changes in the door’s position. 
Alternatively, Fig. 9 shows the TM static description of a door. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The diagram reflects the intuitive idea of events as the 
door moves between two positions; therefore, as Fig. 10 
shows, there are two events, closed and open, and two 
changing events, opening and closing. Fig. 11 shows the 
corresponding behavioral model. The TM model seems 
simpler than the state diagram, but it is richer in semantics.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 An example of a state machine (partial, from [14]). 
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4 TM model of the assembly line  
 
4.1 The static model 
 
Fig. 12 shows a fresh start to model the assembly line 
example. First, an item is received in M1 (number 1). The 
number of items in B1 is incremented (2). The number of 
items in B1 is checked. 

-  If it is 3, then no additional item is accepted in 
M1 (3). 

-  If it is greater than 0 (4), then an item is released 
to M1 (this happens automatically because M1 is 
initially idle; later, M1 will trigger this action), 
the number of items in the queue is decremented 
(5), and accepting an item from the outside is 
activated (6).  

Accordingly, an item moves from B1 to M1 (7 and 8) and 
processed (9). If M1 is not blocked, (10) flows to M2 (11). 
The number of items in B2 is incremented (12). If the 
number of items in B2 is 3, then M2 is blocked (13); 
otherwise, it is unblocked. If the number of items in B2 is 
>0 (14), then an item is sent to M2 (15) and the number of 
items in B2 is decremented (16). The received item is 
processed and leaves M2 (17). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2 The Events model 

Accordingly, Fig. 13 shows the set of events superimposed 
on the static model as follows: 
 
E1: A new item enters M1, and the number of items is 

incremented in B1. 
E2: The number of item in B1 reaches 3, so further 

acceptance of items is blocked. 
E2: If the number of items in B1 is greater than zero, send 

an item to M1. 
E4: Decrement the number of items and accept further 

items in B1. 
E5: An item flows from B1 to M1. 
E6: An item is processed in M1. 
E7: M2 is not blocked. 
E8: If M2 is not blocked, then send the processed item 

from M1 to M2. 
E9: Increment the number of items in B2. 
E10: If the number of items in B2 is 3, then block M2 

from accepting an item from M1; otherwise, unblock 
it.  
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Fig. 13 The TM events model of the assembly line. 

Fig. 12 The TM static model of the assembly line. 
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E11: If the number of items in B2 is greater than zero, then 

decrement the number of items. 
E12: Send an item from B2 to M2. 
E13: Process an item in T2 and release it when finished 

processing. 
Fig. 14 shows the behavioral model of the assembly line. 
The model represents the chronology of events and stands 
as the controlling module of the assembly line system.  
 
Suppose that S1 stands for an input item to the assembly 
line. Fig. 15 shows a sample sequence of events, in which 

- it is assumed, initially, that B1 and B2 contain 
zero items and M1 and M2 are unblocked and 
idle, 

- bookkeeping events (e.g., E3 and E4) are shown 
only when they are applicable, 

- all events have the same time duration, and 
- we assume priority of events from left to right. 

 
5. Another example of TM Modeling 

We noted previously that that the TM model includes more 
details than are necessary to produce an accurate basic 
model. Of course, in general, such details come with the 
cost of having a more complex model system. However, 
we think that TM modeling has appropriate level of detail 
because it is constructed from one category: the thimac. 
The thimac includes five actions, flows and trigger that are 
applied repeatedly while a high level abstraction is 
preserved. Additionally, the TM modeling seems more 
complete than a state machine because it starts with a 
static model, then includes an events model, and last, the 
behavioral model 
To emphasize such a thesis, we analyze in this section a 
more complex system than the one in the previous section. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Consider the state machine given in the classical book 
Object-Oriented Modeling and Design with UML [6] in 
Fig. 16. The state diagram is for a telephone line. 
According to Blaha and Rumbaugh [6], the diagram 
concerns a phone line and not the caller or the callee. It 
contains sequences associated with normal calls as well as 
some abnormal sequences, such as timing out while 
dialing or getting a busy signal.  

E7

E1 E2 E3 

E4 
E8E5 

E10

E11 E9E6 E12 E13

Fig. 14 The TM behavioral model of the assembly line. 

Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 Time 9 Time 19
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Fig. 15 Sample partial run of the behavioral model. 

Fig. 16 State diagram for phone line with activities (From [6]). 
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According to Blaha and Rumbaugh [6], “At the start of a 
call, the telephone line is idle. When the phone is removed 
from the hook, it emits a dial tone and can accept the 
dialing of digits. Upon entry of a valid number, the phone 
system tries to connect the call and route it to the proper 
destination. The connection can fail if the number or trunk 
are busy. If the connection is successful, the called phone 
begins ringing. If the called party answers the phone, a 
conversation can occur. When the called party hangs up, 
the phone disconnects and reverts to idle when put on 
hook again” [6]. 
 
5.1 TM Static Model 
 
Fig. 17 shows the TM model of this phone line. When the 
phone is lifted from the hook (1), a signal is created (2) 
and omitted (for simplification, we do not show the flow 
of this signal). 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
This signal triggers the following initialization; 
- A dial tone (3) that indicates acceptance of the dialing 

of digits.  
- The number of digits is initializing to zero (4). 
- The dialed number is initialized to blank (5). 
- Timing is set on (6).  
Accordingly, with each created digit (7) by the user, 
- the number of dialed digits is incremented (8), 
- the timing is reset (9), and 
- the input digit to construct the dialed number (10) is 

sent. 
The number of dialed digits is examined (11), and 
- if it is less than n, then this triggers expecting 

additional digit input (13); 
- if it is = n, then the input number is processed (14), 

and if it is valid (15), a connection is requested from 
the other side (16).  
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- If the number is not valid (17), a recorded message is 

output (18) and the system is initialized again to 
accept the dialing of digits (see initialization above). 

The other side of the line sends a response (20).  
- If it is a connected response (21), it is sent to the 

speaker (22). 
-  If it is a ringing tone (23), a ringing tone is produced 

on the speaker (24). 
- If it is busy or disconnected, a busy sound (25) is 

produced and sent to the speaker (26). 
 
Meanwhile, during the connection, the user sound is 
captured by the microphone and sent to the other side. 
Additionally, when time expires (27), a warning time is 
output. 
 
5.2 Projecting States over the TM model 
 
If we project Blaha and Rumbaugh’s [6] states over the 
TM representation of the phone line, we end up with many 
details the state diagram does not include. To save space, 
Fig. 18 shows projecting the state of a dial tone, which 
includes many initializations when the phone is removed 
from the hook. Applying triggers would produce very a 
messy diagram. 
 
5.3 Events model  
 
Fig. 19 shows the events model of the phone line. To save 
space, we will not list these events here. Some of Blaha 
and Rumbaugh’s [6] states coincide with the selected 
events in Fig. 19. Fig. 20 shows the behavioral model. 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
6. Conclusion 

We have critically analyzed the notion of a state in 
conceptual modeling utilizing the thinging machine model. 
In a TM, a state is defined as a type of an event. In two case 
studies, we contrast the state-based method with the 
corresponding TM model. The TM model is more complete 
than the state-based model because it starts with a static 
model, followed by an events model to construct a 
behavioral model. The TM notion of events is well defined 
in comparison to the state-based model because  
- things/machines form thimacs; 
- machines have the five-action structure; 
- machines create, process, release, transfer, and receive 

things; 
- things are what can be created, processed, released, 

transferred, and/or received; 
- things denote the wholeness of the thimac; 
- events are static thimacs with time; 
- behavior is the chronology of events; and 
- a single static TM model leads to an event model, 

which in turn results in a behavioral model using the 
same modeling notations. 

Contrasting this with the numerous notations of state charts 
and other UML heterogeneous multigraphs, we observe 
that integrating state machines with other types of UML 
diagrams is difficult. 

Nevertheless, this paper is a work in progress that requires 
further investigation, specifically experimentation with 
more state machines of various types. This investigation 
could also be supplemented with philosophical issues 
related to states, events, facts, and propositions, which we 
will do in future research. 
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Fig. 18 Partial view of the static model of the phone line showing the part that represents the state Dial tone. 



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 
 

 

31

 

 

 

 

 

 

 

  
  

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Telephone

 

Digit

 
Create 

 

 

Number 

 
Response 

Receive Transfer 

 

Microphone 
t

Transfer Process Receive

 

Speaker (voice) 
t

Create

Hook

Create 
zero 

Create: blank 

Transfer

Transfer Release

Process 

Disconnect 
Busy  Ringing

Release

 Dialing tone
Release TransferCreate 

Process     
 If less n 

 Recorded message 

Release Transfer Create 

Process 

Invalid

 Connection request 
tRelease TransferCreate 

Valid If n 

Process: 
Increment 

 
 

Process: 
Concatenate 

Current  

No. digits 

 Create 

 

Process:  
If out of time

 

Warning 

Release 

Transfer 

Create

ON

OFF

OUT

OUT OUT

OUT

OUT 

Other 
telephone

Other 
telephone 

OUTRelease TransferCreate 

 Busy tune 

Release Transfer Create

 Ringing tune

Release Transfer Create

Connected 

Lift 
phone

T
ra

ns
fe

r 

R
el

ea
se

  
 
 Create

Start signal

Fig. 19 The events TM representation of the phone line.  

R
ec

ei
ve

 

Phone 
Put 0n

E2 

E1 

E3 

E4 

E5 
E6 E7 

E8 
E9 E10 

E11 E12 

E13 

E14 

E15 

E15 
E1 E2 

E3 E4 

E5 
E6 

E7 

E8 

E9 E10 

E11 

E12 
E13 

E14 

E14 

Fig. 20 The behavioral TM representation of the phone line.  



IJCSNS International Journal of Computer Science and Network Security, VOL.23 No.5, May 2023 
 

 

32

 

 
References 
  
[1] Bringsjord, S.: Philosophical engineering: Some 

reflections. In: WPE-2007 Workshop on Philosophy 
and Engineering, Technical University- Delft, 
Netherlands, October 29-31, 2007 

[2] Buede, D.M.: The Engineering Design of Systems: 
Models and Methods. John Wiley and Sons (2000) 

[3] Wagner, F., Wolstenholme, P.: Misunderstandings 
About State Machines. IEE Computing & Control 
Engineering 15(4):40- 45 (2004). DOI: 
10.1049/cce:20040413 

[4] Wilson, P., Mantooth, H.A.: Chapter 6 - Block 
Diagram Modeling and System Analysis, Model-
Based Engineering for Complex Electronic Systems, 
pp. 169–196. Publisher Newnes, Oxford, U. K. (2013). 
DOI: 10.1016/C2010-0-64918-2 DOI: 10.1016/B978-
0-12-385085-0.00006-3 

[5] Obota M.E., Ukwa C.N., Ona D.I.: Modeling & 
Control of Event Based Behaviour Using State 
Machines. The International Journal Of Engineering 
And Science 3(5), 54–58 (2014) 

[6] Blaha, H., Rumbaugh, J.: Object-Oriented Modeling 
and Design with UML, 2nd ed. Pearson Prentice Hall, 
Upper Saddle River (2005) 

[7] Chisholm, R.: Person and Object: A Metaphysical 
Study. Open Court Publishing Company, LaSalle 
(1976) 

[8] Steward, H.: The Ontology of Mind Events, Processes, 
and States. Oxford University Press, Oxford (2011). 
10.1093/acprof:oso/9780198250647.001.0001 

[9] Baldawa, D.: Writing Maintainable Code Using State 
Machines in Python. Zeolearn (2018). 
https://www.zeolearn.com/magazine/writing-
maintainable-code-using-sate-machines-in-python 

[10] Al-Fedaghi, S.: Change in Conceptual Modeling and 
Systems Reconfiguration. International Journal of 
Computer Science and Network Security 22(4), 481–
490 (2022). DOI: 10.22937/IJCSNS.2022.22.4.57 

[11] Al-Fedaghi, S.: Conceptual Modeling of Events Based 
on One-Category Ontology. International Journal of 
Computer Science and Network Security 22(3), 425–
436 (2022). doi.org/10.22937/IJCSNS.2022.22.3.54 

[12] Huang C-C.: Discrete Event System Modeling Using 
Sysml and Model Transformation. Thesis of Doctor of 
Philosophy in the School of Industrial and Systems 
Engineering, Georgia Institute of Technology (2011). 
https://smartech.gatech.edu/bitstream/handle/1853/45
830/Huang_ChienChung_201112_phd.pdf 

[13] Whitehead, A.N.: Adventures of Ideas. Free Press, 
New York (1967) 

[14] Sparx Systems Pty Ltd., UML 2 Tutorial - State 
Machine Diagram (2022). 
https://sparxsystems.com/resources/tutorials/uml2/stat
e-diagram.html 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Sabah S. Al-Fedaghi is an associate          
 professor in the Department of Computer 
 Engineering at Kuwait University. He 
holds  an MS and a PhD from the 
Department of Electrical Engineering and 
Computer Science, Northwestern 
University, Evanston, Illinois, and a BS 

from Arizona State University. He has published many 
journal articles and papers in conferences on software 
engineering, database systems, information ethics, privacy, 
and security. He headed the Electrical and Computer 
Engineering Department (1991–1994) and the Computer 
Engineering Department (2000–2007). He previously 
worked as a programmer at the Kuwait Oil Company. Dr. 
Al-Fedaghi has retired from the services of Kuwait 
University on June 2021.  He is currently (Fall 2021/2022) 
seconded to teach in the department of computer 
engineering, Kuwait University. 




