References
- Miller SA, Heard BR. The environmental impact of autonomous vehicles depends on adoption patterns. Environ. Sci. Technol. 2016;50:6119-6121. https://doi.org/10.1021/acs.est.6b02490
- Fagnant DJ, Kockelman K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015;77:167-181. https://doi.org/10.1016/j.tra.2015.04.003
- Bansal P, Kockelman KM. Forecasting Americans' long-term adoption of connected and autonomous vehicle technologies. Transp. Res. Part A Policy Pract. 2017;95:49-63. https://doi.org/10.1016/j.tra.2016.10.013
- Alexander D, Gartner J. Self-driving vehicles, advanced driver assistance systems, and autonomous driving features: Global market analysis and forecasts. Navigant Consulting, Inc.; 2014.
- Bierstedt J, Gooze A, Gray C, Peterman J, Raykin L, Walters J. Effects of next-generation vehicles on travel demand and highway capacity. FP Think Working Group; 2014. p. 10-11.
- Laslau C, Holman M, Saenko M, See K, Zhang Z. Set autopilot for profits: Capitalizing on the $87 billion self-driving car opportunity. Lux Research; 2014.
- Litman T. Autonomous vehicle implementation predictions. Victoria, Canada: Victoria Transport Policy Institute; 2017.
- Anenberg SC, Miller J, Minjares R, et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 2017;545:467-471. https://doi.org/10.1038/nature22086
- Huang Y, Ng ECY, Zhou JL, Surawski NC, Chan EFC, Hong G. Eco-driving technology for sustainable road transport: A review. Renew. Sust. Energ. Rev. 2018;93:596-609. https://doi.org/10.1016/j.rser.2018.05.030
- Huang Y, Organ B, Zhou JL, et al. Remote sensing of on-road vehicle emissions: Mechanism, applications and a case study from Hong Kong. Atmos. Environ. 2018;182:58-74. https://doi.org/10.1016/j.atmosenv.2018.03.035
- EPA. Environmental Protection Agency releases MOVES 2010 Mobile Source Emission Model: Questions and Answers. G. EPA-420-F-09-073, Washington D.C.; 2009.
- Los B, Timmer MP, de Vries GJ. How global are global value chains? A new approach to measure international fragmentation. J. Reg. Sci. 2015;55:66-92. https://doi.org/10.1111/jors.12121
- Fernandes P, Nunes U. Platooning with IVC-enabled autonomous vehicles: Strategies to mitigate communication delays, improve safety and traffic flow. IEEE Trans. Intell. Transp. Syst. 2012;13:91-106. https://doi.org/10.1109/TITS.2011.2179936
- Fernandes P, Nunes U. Platooning of autonomous vehicles with intervehicle communications in SUMO traffic simulator. In: 13th International IEEE Conference on Intelligent Transportation Systems; 19-22 September 2010; Funchal, Portugal: IEEE.
- Shladover SE, Su D, Lu X-Y. Impacts of cooperative adaptive cruise control on freeway traffic flow. Transp. Res. Rec. 2012;2324:63-70. https://doi.org/10.3141/2324-08
- Brown A, Gonder J, Repac B. An analysis of possible energy impacts of automated vehicles. In: Road vehicle automation. New York: Springer; 2014. p. 137-153.
- Stephens TS, Gonder J, Chen Y, Lin Z, Liu C, Gohlke D. Estimated bounds and important factors for fuel use and consumer costs of connected and autonomous vehicles. No. NREL/TP-5400-67216. Golden CO, United States: National Renewable Energy Lab. (NREL); 2016.
- Horowitz R, Varaiya P. Control design of an automated highway system. Proc. IEEE 2000;88:913-925. https://doi.org/10.1109/5.871301
- Milanes V, Villagra J, Godoy J, Simo J, Perez J, Onieva E. An intelligent V2I-based traffic management system. IEEE Trans. Intell. Transp. Syst. 2012;13:49-58. https://doi.org/10.1109/TITS.2011.2178839
- Van der Voort M, Dougherty MS, van Maarseveen M. A prototype fuel-efficiency support tool. Transp. Res. Part C Emerg. Technol. 2001;9:279-296. https://doi.org/10.1016/S0968-090X(00)00038-3
- Wu C, Zhao G, Ou B. A fuel economy optimization system with applications in vehicles with human drivers and autonomous vehicles. Transp. Res. Part D Transp. Environ. 2011;16:515-524. https://doi.org/10.1016/j.trd.2011.06.002
- Talebpour A, Mahmassani HS. Influence of connected and autonomous vehicles on traffic flow stability and throughput. Transp. Res. Part C Emerg. Technol. 2016;71:143-163. https://doi.org/10.1016/j.trc.2016.07.007
- Wadud Z, MacKenzie D, Leiby P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transpor. Res. Part A Policy Pract. 2016;86:1-18. https://doi.org/10.1016/j.tra.2015.12.001
- Tientrakool P, Ho Y-C, Maxemchuk NF. Highway capacity benefits from using vehicle-to-vehicle communication and sensors for collision avoidance. In: 2011 IEEE Vehicular Technology Conference (VTC Fall); 5-8 September 2011; San Francisco, CA, USA: IEEE.
- Atiyeh C. Predicting traffic patterns, one Honda at a time. MSN Auto; June 2012.
- Scholz T, Schmallowsky A, Wauer T. Auswirkungen eines allgemeinen tempolimits auf autobahnen im land brandenburg [Internet]. Schlothauer & Wauer; c2007. Available from: http://www.mil.brandenburg.de/media_fast/4055/studie_tempolimit.pdf.
- Yu S, Shi Z. Dynamics of connected cruise control systems considering velocity changes with memory feedback. Measurement 2015;64:34-48. https://doi.org/10.1016/j.measurement.2014.12.036
- Bose A, Ioannou PA. Analysis of traffic flow with mixed manual and semiautomated vehicles. IEEE Trans. Intell. Transp. Syst. 2003;4:173-188. https://doi.org/10.1109/TITS.2003.821340
- Tang TQ, Li JG, Huang HJ, Yang XB. A car-following model with real-time road conditions and numerical tests. Measurement 2014;48:63-76. https://doi.org/10.1016/j.measurement.2013.10.035
- Yu S, Shi Z. An extended car-following model considering vehicular gap fluctuation. Measurement 2015;70:137-147. https://doi.org/10.1016/j.measurement.2015.03.031
- Yu S, Shi Z. An improved car-following model considering relative velocity fluctuation. Commun. Nonlinear Sci. Numer. Simul. 2016;36:319-326. https://doi.org/10.1016/j.cnsns.2015.11.011
-
Abou-Senna H, Radwan E. VISSIM/MOVES integration to investigate the effect of major key parameters on
$CO_2$ emissions. Transp. Res. Part D Transp. Environ. 2013;21:39-46. https://doi.org/10.1016/j.trd.2013.02.003 - Abou-Senna H, Radwan E, Westerlund K, Cooper CD. Using a traffic simulation model (VISSIM) with an emissions model (MOVES) to predict emissions from vehicles on a limited-access highway. J. Air Waste Manage. Assoc. 2013;63:819-831. https://doi.org/10.1080/10962247.2013.795918
- Shah R, Nezamuddin N, Levin MW. Supply-side network effects on mobile-source emissions. Transp. Policy 2018 (in press).
- Stevanovic A, Stevanovic J, Zhang K, Batterman S. Optimizing traffic control to reduce fuel consumption and vehicular emissions: Integrated approach with VISSIM, CMEM, and VISGAOST. Transp. Res. Rec. 2009;2128:105-113. https://doi.org/10.3141/2128-11
- Boyce D. Forecasting travel on congested urban transportation networks: Review and prospects for network equilibrium models. Netw. Spat. Econ. 2007;7:99-128. https://doi.org/10.1007/s11067-006-9009-0
- Lee S. Mathematical programming algorithms for equilibrium road traffic assignment [dissertation]. London: Univ. of London; 1995.
- LeBlanc LJ, Morlok EK, Pierskalla WP. An efficient approach to solving the road network equilibrium traffic assignment problem. Transp. Res. 1975;9:309-318. https://doi.org/10.1016/0041-1647(75)90030-1
- United States, Bureau of Public Roads. Traffic assignment manual for application with a large, high speed computer. Washington D.C.: US Department of Commerce, Bureau of Public Roads, Office of Planning Urban Planning Division; 1964.
- Frank M, Wolfe P. An algorithm for quadratic programming. Nav. Res. Logist. 1956;3:95-110. https://doi.org/10.1002/nav.3800030109
- National Institute of Environmantal Research. Air pollutant emission factors: Estimated by 2012 emissions. Ministry of Environment, Incheon, Republic of Korea. 2015 (Korean).
- Li Y, Pearson B, Murrells T. Updated vehicle emission curves for use in the National Transport Model. Report to the Department for Transport; 2009.
- Wang J, Rakha HA. Fuel consumption model for conventional diesel buses. Appl. Energ. 2016;170:394-402. https://doi.org/10.1016/j.apenergy.2016.02.124
- Kamali M, Dennis LA, McAree O, Fisher M, Veres S. Formal verification of autonomous vehicle platooning. Sci. Comput. Prog. 2017;148:88-106. https://doi.org/10.1016/j.scico.2017.05.006
- Iacobucci R, McLellan B, Tezuka T. Modeling shared autonomous electric vehicles: Potential for transport and power grid integration. Energy 2018;158:148-163. https://doi.org/10.1016/j.energy.2018.06.024
- Elliott C. Should you buy a new car? Read this first. In: Forbes; 14 November 2018.
- Varun M, Kumar C. Problems in electric vehicles. Int. J. Appl. Res. Mech. Eng. 2012;2:63-73.
- Toma S. Six problems with electric cars that nobody talks about. In: Autoevolution; 6 November 2017.
- Massey J. Charging electric vehicles: The challenges ahead. In: energypost.eu.; 8 February 2018.
- Aengenheyster M, Feng QY, Ploeg F, Dijkstra HA. The point of no return for climate action: Effects of climate uncertainty and risk tolerance. Earth Syst. Dynam. 2018;9:1085-1095. https://doi.org/10.5194/esd-9-1085-2018
- IPPC. Intergovernmental panel on climate change. In: IPCC Sixth Assessment Report; 2018.
- US Environmental Protection Agency. Light-duty automotive technology, carbon dioxide emissions, and fuel economy trends: 1975 through 2017; January 2018.
- Harper C, Mangones S, Hendrickson C, Samaras C. Bounding the potential increases in vehicles miles traveled for the non-driving and elderly populations and people with travel-restrictive medical conditions in an automated vehicle environment. In: Trnsportation Research Board 94th Annual Meeting; 11-15 January 2015; Washington D.C.
- MacKenzie D, Wadud Z, Leiby P. A first order estimate of energy impacts of automated vehicles in the United States. In: Transportation Research Board Annual Meeting; Washington D.C.; 2014. p. 12-16.
- Childress S, Nichols B, Charlton B, Coe S. Using an activity-based model to explore the potential impacts of automated vehicles. Transp. Res. Rec. 2015;2493:99-106. https://doi.org/10.3141/2493-11
- Gucwa M. Mobility and energy impacts of automated cars. In: Proceedings of the Automated Vehicles Symposium; San Francisco; 2014.
- Hymel KM, Small KA, Van Dender K. Induced demand and rebound effects in road transport. Transp. Res. Part B Methodol. 2010;44:1220-1241. https://doi.org/10.1016/j.trb.2010.02.007
- Cervero R. Induced demand: An urban metropolitan perspective. Univ. of California Transportation Center; UC Berkeley; 2001.
- Fagnant DJ, Kockelman KM. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part C Emerg. Technol. 2014;40:1-13. https://doi.org/10.1016/j.trc.2013.12.001
- Wang B. Waymo started its commercial self-driving ride sharing service. In: NextBigFuture; 6 December 2018.
Cited by
- Assessing the Sustainability Implications of Autonomous Vehicles: Recommendations for Research Community Practice vol.12, pp.5, 2020, https://doi.org/10.3390/su12051902
- An Air Pollutant Emission Reduction Path of China’s Power Industry vol.11, pp.8, 2020, https://doi.org/10.3390/atmos11080852
- Assessing dynamic capabilities of incumbents in the face of unprecedented industry transformation: the case of the automotive industry vol.14, pp.2, 2020, https://doi.org/10.1108/jsma-11-2020-0325
- Developing a Traffic Model to Estimate Vehicle Emissions: An Application in Seoul, Korea vol.13, pp.17, 2020, https://doi.org/10.3390/su13179761