• Title/Summary/Keyword: Conceptual Configuration Design

Search Result 130, Processing Time 0.02 seconds

Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design (공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계)

  • Song, Gi-Nam;Gang, Byeong-Su;Choe, Seong-Gyu;Yun, Gyeong-Ho;Park, Gyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1623-1630
    • /
    • 2002
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water, and maintains a coolable geometry from the external impact loads. In this research, a new shape of the spacer grid is designed by the axiomatic approach. The Independence axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

Design of a Nuclear Fuel Rod Support Grid Using Axiomatic Design (공리적 설계를 이용한 원자로 핵연료봉 지지격자체의 설계)

  • Song, K.N.;Kang, B.S.;Choi, S.K.;Yoon, K.H.;Park, G.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.548-553
    • /
    • 2001
  • Recently, much attention is imposed on the design of the fuel assemblies in the Pressurized Light Water Reactor (PWR). Spacer grid is one of the main structural components in a fuel assembly. It supports fuel rods, guides cooling water and protects the system from the external impact loads. Various space grids have been proposed and new designs are also being created. In this research, a new spacer grid is designed by the axiomatic approach. The Independence Axiom is utilized for the design. For conceptual design, functional requirements (FRs) are defined and corresponding design parameters (DPs) are found to satisfy FRs in sequence. Overall configuration and shapes are determined in this process. Detail design is carried out based on the result of the axiomatic design. For the detail design, the system performances are evaluated by using linear and nonlinear finite element analysis. The dimensions are determined by optimization. Some commercial codes are utilized for the analysis and design.

  • PDF

Design of Heat-Activated Reversible Integral Attachments for Product-Embedded Disassembly

  • Li, Ying;Kikuchi, Noboru;Saitou, Kazuhiro
    • International Journal of CAD/CAM
    • /
    • v.3 no.1_2
    • /
    • pp.19-29
    • /
    • 2003
  • Disassembly is a fundamental process needed for component reuse and material recycling in all assembled products. Integral attachments, also known as 'snap' fits, are favored fastening means in design for assembly (DFA) methodologies, but not necessarily a favored choice for design for disassembly. In this paper, design methods of a new class of integral attachments are proposed, where the snapped joints can be disengaged by the application of localized heat sources. The design problem of reversible integral attachments is posed as the design of compliant mechanisms actuated with localized thermal expansion of materials. Topology optimization technique is utilized to obtain conceptual layout of snap-fit mechanisms that realizes a desired deformation of snapped features for joint release. Two design approaches are attempted and design results of each approach are presented, where the geometrical configuration extracted from optimal topologies are simplified to enhance the manufacturability for the conventional injection molding technologies. To maximize the magnitude of deformation, a design scheme has been proposed to include boundary conditions as design variables. Final designs are verified using commercial software for finite element analysis.

A Study on the Characteristics of the Spatial expression of Max Bill (Max Bill의 공간표현 체계에 관한 연구)

  • 신홍경
    • Korean Institute of Interior Design Journal
    • /
    • no.19
    • /
    • pp.136-143
    • /
    • 1999
  • Art belongs to men's mentality and plays the most representative role in mentality. The organization of mentality is complex, it has simple and distinct movement evolving into various configuration to achieve men's internal meaning and aim. The purpose of this study is to analyze Max Bill's characteristics of the spatial expression on his works, especially focuses on the concept called "simplicity". The simplicity does not means just a conceptual or formal terminology, but the logical principles of spatial organization through repeating arrangement, structural relationship, off-central ideas and the sequence of signs using by the composition of lines, faces and colors. He expressed the logical methods in various fields of art and has influenced his essential thoughts and emotion in men's mentality of the late 20th century20th century.

  • PDF

Development of Vertical Barrel Type Multistage Pump (비속도 150급 수직배럴형 다단 원심펌프 개발)

  • Yoo, Il-Su;Park, Mu-Ryong;Hwang, Soon-Chan;Kim, Sung-Ki;Yoon, Eui-Soo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.1
    • /
    • pp.13-20
    • /
    • 2012
  • A vertical-axis multistage pump with low specific speed was developed, satisfying performance requirements such as flow rate, total head, and NPSH. The developed pump was designed through conceptual design, configuration design, and performance analysis by CFD which were established in KIMM. The prototype pump's mechanical wholesomeness besides hydraulic performances were verified by running test, performance test, and reliability test.

Trailing edge geometry effect on the aerodynamics of low-speed BWB aerial vehicles

  • Ba Zuhair, Mohammed A.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.283-296
    • /
    • 2019
  • The influence of different planform parameters on the aerodynamic performance of large-scale subsonic and transonic Blended Wing Body (BWB) aircraft have gained comprehensive research in the recent years, however, it is not the case for small-size low subsonic speed Unmanned Aerial Vehicles (UAVs). The present work numerically investigates aerodynamics governing four different trailing edge geometries characterizing BWB configurations in standard flight conditions at angles of attack from $-4^{\circ}$ to $22^{\circ}$ to provide generic information that can be essential for making well-informed decisions during BWB UAV conceptual design phase. Simulation results are discussed and comparatively analyzed with useful implications for formulation of proper mission profile specific to every BWB configuration.

A Tailless UAV Multidisciplinary Design Optimization Using Global Variable Fidelity Modeling

  • Tyan, Maxim;Nguyen, Nhu Van;Lee, Jae-Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.662-674
    • /
    • 2017
  • This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle (UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are equal to the high-fidelity analysis results by algorithm definition.

Conceptual Design of Product & Asset Lifecycle Management System for Marine Structures During Middle of Life (선박해양구조물의 유지보수 단계 수명주기관리 정보 시스템의 개념 설계와 구현)

  • Kim, Seung-Hyun;Lee, Jang-Hyun;Son, Gum-Jun;Han, Eun-Jung
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.58-67
    • /
    • 2012
  • Recently, both the integration of product data during design and production and the effective management of information during full lifecycles have attracted attention from shipyards and ship owners as a result of recycling regulations and a desire for efficient operations. Generally, PLM (Product Lifecycle Management) supports a collaborative environment during the BOL (Beginning of Life) stage, while an ALM (Asset Lifecycle Management) system provides all of the information required to maintain, overhaul, and discard/recycle all or part of a vessel during the MOL (Middle of Life) and EOL (End of Life) stages. The main goal of this paper is to suggest the fundamental configuration of a PALM (Product Asset Lifecylce Management) system and a method that can be used to utilize a marine vessel's lifecycle information during the MOL, emphasizing the maintenance information during the middle of life. The authors also suggest a PALM system configuration in which lifecycle information can be collected by a PEID (Product Embedded Information Device) integrating a microcomputer, sensors, and wireless network communication. Through a prototype PALM system, the suggested features and PALM system configuration are implemented.

FEED Framework Development for Designing Supercritical Carbon Dioxide Power Generation System (초임계 이산화탄소 발전시스템 설계를 위한 FEED(Front End Engineering Design) 프레임워크 개발)

  • Kim, Joon-Young;Cha, Jae-Min;Park, Sungho;Yeom, Choongsub
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2017
  • Supercritical carbon dioxide power system is the next generation electricity technology expected to be highly developed. The power system can improve net efficiency, simplify cycle configuration, and downsize equipment compared to conventional steam power system. In order to dominate the new market in advance, it is required to found Front End Engineering Design (FEED) Framework of the system. Therefore, this study developed the FEED framework including design processes for the supercritical carbon dioxide power system, information elements for each process, and relationships for each element. The developed FEED framework is expected to be able to secure systematic technological capabilities by establishing a common understanding and perspective among multi-field engineers participating in the design.

Study on Effective Arrangement of Mooring Lines of Floating-Type Combined Renewable Energy Platform (부유식 복합 재생에너지 플랫폼 계류선의 효과적 배치에 관한 연구)

  • Choung, Joonmo;Jeon, Gi-Young;Kim, Yooil
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.22-32
    • /
    • 2013
  • This paper presents the conceptual design procedure for the taut-leg mooring lines of a floating-type combined renewable energy platform. The basic configuration of the platform is determined based on an understanding of floating offshore plants. The main dimensions and mass distribution are determined based on a hydrostatic calculation. To identify the motion history of the floating platform and the tension history of the mooring lines, a hydrodynamic analysis is executed using Ansys.Aqwa. This helps in the selection of the best configuration for the mooring system such as the number of mooring lines, wire types, anchored positions, etc. In addition, the fatigue life of the mooring lines can be predicted from the tension history using the rain-flow cycle counting method.