
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: July 18, 2017  Revised: December 14, 2017  Accepted: December 14, 2017

662 http://ijass.org pISSN: 2093-274x eISSN: 2093-2480

Paper
Int’l J. of Aeronautical & Space Sci. 18(4), 662–674 (2017)
DOI: http://dx.doi.org/10.5139/IJASS.2017.18.4.662

A Tailless UAV Multidisciplinary Design Optimization Using Global 
Variable Fidelity Modeling 

Maxim Tyan*
Department of Aerospace Information Engineering, Konkuk University, Seoul 05029, Republic of Korea

Nhu Van Nguyen**
Viettel Aerospace Institute, Viettel Group, Hanoi 100000, Vietnam 

Jae-Woo Lee***
Department of Aerospace Information Engineering, Konkuk University, Seoul 05029, Republic of Korea

Abstract

This paper describes the multidisciplinary design optimization (MDO) process of a tailless unmanned combat aerial vehicle 

(UCAV) using global variable fidelity aerodynamic analysis. The developed tailless UAV design framework combines multiple 

disciplines that are based on low-fidelity and empirical analysis methods. An automated high-fidelity aerodynamic analysis 

is efficiently integrated into the MDO framework. Global variable fidelity modeling algorithm manages the use of the high-

fidelity analysis to enhance the overall accuracy of the MDO by providing the initial sampling of the design space with iterative 

refinement of the approximation model in the neighborhood of the optimum solution. A design formulation was established 

considering a specific aerodynamic, stability and control design features of a tailless aircraft configuration with a UCAV 

specific mission profile. Design optimization problems with low-fidelity and variable fidelity analyses were successfully solved. 

The objective function improvement is 14.5% and 15.9% with low and variable fidelity optimization respectively. Results also 

indicate that low-fidelity analysis overestimates the value of lift-to-drag ratio by 3-5%, while the variable fidelity results are 

equal to the high-fidelity analysis results by algorithm definition. 

Key words: ��Multidisciplinary Design Optimization (MDO), Variable fidelity optimization, Tailless aircraft, Unmanned Oerial 

Vehicle (UAV), Aircraft conceptual design

1. Introduction

From the time of the first fliers, aviation engineers have 

sought an aircraft that will generate the maximum lift with 

the minimum drag. The relentless search for such an aircraft 

led to the creation of the flying wing (FW) concept. A FW 

aircraft is an aircraft without empennage and a fuselage; the 

entire payload is located inside the wing. The internal volume 

of such an aircraft should be large enough to allocate both 

subsystems and payload. Scientists and engineers have always 

showed their interest in aircraft of this scheme; however, just 

a few of these FW aircraft have changed their status from 

experimental to operational. Inspired by the naturally stable 

glide of the Zanonia [1] seed in the early 1900s, J. W. Dunne 

was one of the first engineers to propose [2] the ideas of 

achieving inherent stability of a flying wing with his Dunne 

D.8 biplane. The Horten brothers designed several of the most 

advanced aircraft of the 1940s [3], including H0-229, the first 

jet-powered flying wing. Jack Northrop designed XB-35 and 

YB-35 heavy bombers after World War II. Although these 

aircraft were not mass-produced, test prototypes allowed 

designers to obtain a better understanding about the flying 
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wing aerodynamics, stability and control. 

In 1947, J. Northrop described the design issues of the 

scheme in his most well-known lecture [4]. A flying wing 

aircraft has a number of advantages compared to conventional 

aircraft. J. Northrop declared [4] that approximately 50% 

reduction of the parasitic drag coefficient(CD0
) can be 

achieved for a FW aircraft compared to conventional aircraft. 

Therefore, for a FW aircraft to achieve the same cruising speed 

as that of a conventional aircraft requires from 11 to 25% 

less power, and with the same amount of fuel, a FW aircraft 

can fly from 13 to 33% farther than conventional aircraft. 

Bolsunovsky et al. [5] estimated an approximately 20% 

increase in the lift-to-drag ratio (L/D) for a large passenger 

FW aircraft compared to a conventional one. In addition, 

to achieve better performance, the flying wing aircraft has a 

lower radar observability, which makes it more attractive for 

military applications because it can be invisible to enemy’s 

radar stations. However, a number of issues prevent the mass 

production of FW aircraft. The absence of a vertical tail leads 

to directional stability issues. Natural directional stability 

is impossible for FW aircraft. A level of directional stability 

compatible to that of conventional aircraft is achievable only 

with implementation of additional control devices, such as 

split drag rudders. The absence of a horizontal tail makes 

longitudinal control less efficient, which does not allow the 

aircraft to overcome a large nose-down pitching moment 

generated by high-lift devices, such as slotted flaps and slats 

at takeoff and landing. This fact leads to a lower maximum lift 

coefficient (CLmax
), thus causing a longer takeoff and landing 

distance. A recent trend in the development of unmanned 

aerial vehicles (UAVs) and advances in automatic control 

systems has renewed the interest of engineers in the flying 

wing concept. 

Currently, the objective of an aircraft design is to 

determine an optimum design considering multiple analysis 

disciplines. The process of aircraft design is a complex 

process that is composed of many different disciplines. From 

the early 1960s, it was clear that optimization of a single 

discipline cannot guarantee the overall optimum design [6]. 

The concept of multidisciplinary design optimization (MDO) 

was introduced in the 1980s to manage interdisciplinary 

connections in design optimization. Since then, MDO 

has been widely used in different fields of engineering 

design. However, the aircraft design methodology generally 

implements the empirical and semi-empirical equations 

based on Raymer [7], Roskam [8], Torenbeek [9] [10], Vortex 

Lattice Method (VLM) [11], and other relatively simple 

methods. These methods provide good prediction accuracy 

at the conceptual design stage for conventional fixed wing 

aircraft analysis. However, unconventional aircraft analysis 

such as flying wing UCAVs or the analysis at transonic airspeeds 

may cause problems for low-fidelity codes. The increasing 

computational power of modern computer systems made 

it possible to use extensive computer simulations without 

significant effort, but the use of high-fidelity analysis tools 

for design optimization is still very limited. Pure high-fidelity 

optimization may require extensive use of supercomputers 

[12] [13] unless automatic differentiation [14] methods are 

used. Automation of the high-fidelity analysis process is 

another popular topic. High-fidelity aerodynamic analysis, 

also called computational fluid dynamics (CFD), is a process 

that involves several complex procedures for pre-and post-

processing. This paper describes full automation of the CFD 

analysis process for a flying wing UCAV and its integration 

into a variable fidelity design optimization framework. 

The process involves configuration generation in the CAD 

program, structured computational grid generation, solution 

of the Reynolds averaged Navier-Stokes (RANS) equations 

and post-processing of the results. 

Variable fidelity modeling (VFM), also known as 

variable complexity modeling (VCM), is an approach that 

combines high- and low-fidelity analysis tools to increase 

the analysis prediction accuracy while restricting the use 

of high-fidelity analysis with relatively low number. Many 

different VFM algorithms exist. Haftka [15] and Giunta [16] 

used a simple approach of scaling the low-fidelity function 

using a constant scaling factor. Alexandrov et al. [17] [18] 

developed VCM with approximation model management 

that implements a trust region management algorithm to 

enhance the convergence speed and guarantee convergence 

to a high-fidelity solution. Gano [19] [20] and Nguyen [21] 

independently introduced VF optimization algorithms that 

use the global approximation model (Kriging and Neural 

networks) to approximate the scaling function.  Global 

variable fidelity modeling (GVFM) [22] is another approach 

that expands previously developed algorithms and improves 

the convergence speed and accuracy by introducing global 

design space initialization prior to starting the optimization 

loop with iterative refinement of the radial basis functions of 

the network-based global scaling model. 

In this paper, the GVFM algorithm is introduced into 

the MDO environment to perform conceptual design 

optimization of a flying wing UCAV. The paper describes 

details of developed MDO framework with the focus on 

variable fidelity aerodynamic analysis. The framework relies 

on several well-known empirical and low-fidelity analysis 

methods. CFD analysis is introduced to enhance the accuracy 

of a FW UCAV multidisciplinary analysis. An efficient 

way to integrate a CFD analysis into aircraft conceptual 

design framework is proposed. MDO formulation includes 
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methods provided by both variable and low fidelity analysis. 

The results section presents comparison between baseline 

aircraft characteristics, and two optimized configurations. 

The first one is optimized using low-fidelity analysis and 

the second with the proposed variable fidelity aerodynamic 

analysis. 

2. �Integrated Analysis Framework for UAV 
Design

An integrated design synthesis program for a tailless 

aircraft conceptual design was developed in this study. This 

section describes details about the program. Fig. 1 shows the 

MDO framework flowchart. The overall program is composed 

of several interconnected disciplines. The analysis modules 

are developed based on empirical and semi-empirical 

equations, classical analysis methods that use simplified 

physical models with certain number of assumptions, and 

low-fidelity aerodynamic analysis.

2.1 Analysis Disciplines

This subsection describes details regarding each 

individual analysis module. Validation information for 

aerodynamic and mass analysis is presented. Aerodynamics 

and mass analysis are important because they supply the 

data for other analysis modules and affect the accuracy 

of the whole analysis. The user should provide geometric 

information sufficient to create the aircraft geometry through 

the input files. Several analysis modules require geometric 

data in their own format. For example, the mass analysis 

requires the sweep angle at the quarter chord line, while the 

aerodynamic analysis requires tip airfoil section offset in 

the longitudinal direction. The geometric analysis module 

calculates the required parameters based on the user’s input 

and supports other analyses

A modified version of the Athena Vortex Lattice (AVL) 

code [23] by M. Drela and the in-house AERO09 [24] codes 

constitute the aerodynamic analysis module. AVL is a linear 

aerodynamic solver that uses the extended vortex lattice 

method to predict the aerodynamic characteristics of lifting 

surfaces. The framework also uses AVL to predict the stability 

and control (S&C) characteristics. AERO09 combines 

several existing methods adjusted for efficient prediction 

of the parasite drag of an aircraft at different speeds. The 

parasite drag of a FW is composed of friction, form, wave, 

and camber drag components. Parasite drag coefficient of 

a supersonic fighter aircraft with delta wing and single tail 

configuration measured in a wind tunnel is used to validate 

the AERO09 code. Fig. 2 shows a comparison of the parasite 

drag coefficients predicted by AERO09 and RDS [7] with 

the experimental data. The actual values of drag coefficient 

and details of configuration are not provided due to security 

issues. The present method exhibits good agreement with 

the reference wind tunnel data at subsonic and transonic 

speeds that are of interest in this study. Validation of the low-

33 

Fig. 1: Integrated Analysis Program Flowchart 

  
Fig. 1. Integrated Analysis Program Flowchart
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Fig. 2: AERO09 Validation [23] 

  

Fig. 2. AERO09 Validation [24]
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fidelity aerodynamic analysis is presented in section 2.2.

Statistical methods for fighter aircraft by D. Raymer [7] 

and for UAV by J. Gundlach [25] are the core analysis for 

tailless UAV mass and balance calculation. The mass of 

the wing fuselage and the subsystems are estimated using 

Raymer’s equations. A flying wing aircraft has no fuselage by 

definition; the root chord length and thickness are assumed 

as the length and diameter of a fuselage for mass estimation. 

Gundlach's equations are found to be more accurate for the 

landing gear mass calculation. The location of the aircraft 

center of gravity is calculated based on the location of 

each mass component. The CG of a wing and fuselage are 

assumed at 40% of mean aerodynamic chord and 45% of 

the fuselage length respectively as suggested by Raymer [7]. 

Location of a fuel tank CG and a payload is specified as the 

ratio of wingspan and ratio of a chord length. This approach 

allows changing the geometry of wing and preserving the 

safe location. CG of an engine is specified by user according 

to selected engine model. The user defines the mass and CG 

of an engine and payload explicitly. Fig. 3(a) and Fig. 3(b) 

show comparisons of the calculated and reference data for 

the takeoff gross mass and empty mass of a flying wing UCAV. 

The results show good agreement between the calculated 

data and the reference data, with a relative error of less than 

5% for all aircraft models except for Dassault nEUROn. 

Propulsion analysis calculates the turbofan engine’s fuel 

flow and the available thrust as a function of the engine sea 

level thrust, altitude, Mach number and basic geometry 

parameters. The code implements the analysis methods of 

Mattingly [26]. This module is able to run direct analysis as 

well as table lookup of engine performance charts provided 

by the user.

The performance analysis module calculates the steady 

level flight and climb characteristics of an aircraft, such as 

the maximum speed, maximum rate of climb, speed for the 

maximum range and endurance. The point performance 

analysis process shown in Fig. 4 calculates thrust available, 

fuel flow, specific air range (SAR), rate of climb, and other 

parameters required to maintain steady level flight, climb or 

descending at a given altitude, speed, and with given aircraft 

mass. 

Parameters such as the maximum speed, maximum 

specific range and minimum fuel flow are obtained by 

solving several optimization and root finding problems. For 

example, maximum speed is a speed when required thrust 

is equal to available thrust. The maximum and minimum 

speeds are calculated using Newton-Rhapson method by 

finding the root of the equation below. 
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Parameters such as the maximum speed, maximum specific range and minimum fuel flow are 

obtained by solving several optimization and root finding problems. For example, maximum speed is 

a speed when required thrust is equal to available thrust. The maximum and minimum speeds are 

calculated using Newton-Rhapson method by finding the root of the equation below.  

 ( ) ( ) 0req avV T VT   .  (1) 

Required thrust is equal to aircraft drag in steady level flight. Drag at a given flight altitude, 

velocity and mass is provided by aerodynamic analysis. Propulsion analysis module calculates 

available thrust at a given altitude and Mach number. Equation is solved twice with initial velocity for 

the Newton-Rhapson method corresponding to Mach 0.1 to find the minimum and 0.9 to find the 

maximum speed. 

Maximizing SAR at given aircraft mass and altitude provides a flight speed for the maximum range. 

The optimization formulation in this case as: 

. (1)

Required thrust is equal to aircraft drag in steady level 

flight. Drag at a given flight altitude, velocity and mass is 

provided by aerodynamic analysis. Propulsion analysis 

module calculates available thrust at a given altitude and 
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a) Empty mass validation b) Total mass validation 

Fig. 3: Mass and Balance Analysis Validation 

  

                                                                         (a) Empty mass validation                                                 (b) Total mass validation

Fig. 3. Mass and Balance Analysis Validation
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Mach number. Equation is solved twice with initial velocity 

for the Newton-Rhapson method corresponding to Mach 

0.1 to find the minimum and 0.9 to find the maximum 

speed.

Maximizing SAR at given aircraft mass and altitude 

provides a flight speed for the maximum range. The 

optimization formulation in this case as:

9 
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2.2 Variable Fidelity Aerodynamic Analysis

Aerodynamic analysis is extremely important for a flying 

wing aircraft multidisciplinary analysis. This discipline 
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Fig. 6: Aerodynamic Analysis Validation 
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fidelity data at three different angles of attack. The analysis 

is performed at sea level conditions and Mach number of 

0.7 to match with experimental data. Low-fidelity analyses 

presented by a combination of AVL and AERO09 codes show 

good agreement with the experimental data at lift coefficients 

in the range of 0 to 0.1, whereas the prediction error at higher 

angles is observed to increase. Following the theory, it can 

be concluded that the (CD0
) prediction by AERO09 is quite 

accurate, while the induced drag predicted by AVL has lower 

accuracy. AVL models a wing as infinitely thin cambered 

plate. The compressibility effects that take place at high 

subsonic flight may not be calculated accurately. Parabolic 

approximation of a high-fidelity drag polar accurately follows 

the experimental data with mean absolute error of 1.9.10-3. 

Automation of a high-fidelity analysis process is a complex 

task since it involves several standalone programs that have 

different interfaces and automation schemes. An automated 

framework for CFD analysis is developed. The process 

includes generation of a CAD model using Dassault CATIA®, 

structured computational grid generation using Pointwise®, 

RANS CFD analysis using ANSYS Fluent®, and post-

processing. An interface that enables automated generation 

of a CAD model in CATIA is written in Python language 

supported by CAA V5 CATIA API. The CAD generation 

module generates multi-segment tapered wing and exports 

the model for mesh generation. Parameters required to 

construct the model are airfoil coordinates for each section, 

length of the chords, incidence angles, leading edge sweep 

angles and spans of each segment. A set of automation scripts 

is written in Glyph language to enable mesh generation, 

setting a boundary conditions and solution export in the 

Pointwise software. Far-field distance in x, y, and z directions, 

number of nodes over the wing surface and at a far-field, 

and a minimum wall-distance (y+) are required to construct 

a C-type mesh in Pointwise. Another program interface is 

written in ANSYS text user interface (TUI) for automated 

import of a mesh, RANS CFD calculation, post processing 

and solution export. Atmospheric pressure, air density, flow 

speed at the far field and its direction are set through the TUI. 

After calculation is completed, ANSYS exports lift, drag, and 

moment coefficients to a text file. (CD0
, k, and CL0

) parameters 

are then evaluated from 3-point parabola fit. (CLa
, Cma

) and a 

static margin evaluated by a central difference scheme. Fig. 7 

shows the full process of high-fidelity aerodynamic analysis. 

220×112×100 C-type computational mesh with (y+) of 

1.0 is used for CFD analysis. The CFD analysis of a single 
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Fig. 8: Global Variable Fidelity Modeling Process [21] 
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configuration at a single angle of attack takes approximately 

6 hours on desktop PC with i7-4770 CPU and 32 GB RAM. 

Thus, polar approximation by 3 points takes about 18 hours. 

Analysis execution using ANSYS Fluent consumes the 

majority of computational resources. Automated process of 

CAD model generation, meshing and post processing takes 

less than a minute. On a contrast, the similar analysis with the 

proposed low-fidelity analysis setup consumes 3-5 seconds 

within the MDO framework written in Python language. 

A variable fidelity modeling is an approach that allows for 

implementation of high-fidelity aerodynamic analysis into 

the design optimization to increase the prediction accuracy 

of a low-fidelity analysis code. In this research, variable 

fidelity aerodynamic analysis was implemented using 

Global Variable Fidelity Modeling (GVFM) [22] strategy. Fig. 

8 shows the original process of GVFM.

An optimization process starts with the design of 

experiments (DOE) to construct a set of points that will form a 

scaling surrogate model. GVFM uses a radial basis functions 

(RBF) network with a Gaussian activation function to create 

a scaling model. Both high- and low-fidelity functions are 

evaluated at given DOE points. The surrogate model is then 

created using scaling factors (β) at each point.
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where f high(x) is the scaled function, f low(x) is a low fidelity 

function, and β(x) is a scaling surrogate model. When 

the optimization is completed, a high-fidelity function 

is evaluated at an optimum point. If the predictive error 

evaluated by equation (8) is large, then a new point is added 

to a scaling surrogate model and the optimization starts 

again. 
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3. UCAV Design

3.1 Optimization Formulation

Because a flying wing aircraft is an unconventional 

configuration, it is difficult to obtain information related 

to its stability and control and performance. As a result, 

several design objectives and constraints are selected based 
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Fig. 10: Suppression of Enemy Air Defenses (SEAD) Mission Profile [31] 
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on comparison with manned aircraft of a similar category 

and dimensions. The objective of maximizing the lift-to-

drag ratio (L/D) is common for aircraft design optimization 

problems. Longitudinal stability of an aircraft is constrained 

by the static margin. Nicolai [28] provided the values of the 

static margin for a Northrop T-38 trainer and a Douglas F4D 

carrier-based fighter as 5% and 3%, respectively. The design of 

a UCAV considered in this study has a positive static stability 

and a static margin constraint set between 5 and 15%, which 

is slightly higher than that of manned fighter aircraft. The low 

speed condition constrains the elevator authority and the 

wing area. The trim angle of attack is restricted by 8 degrees 

and the elevator deflection to trim to -20 to 20 degrees at a 

speed of 65 m/s at sea level. One of the main issues of a flying 

wing is a directional stability [4] [29] [30] [31]. Achieving a 

level of directional stability similar to that of conventional 

aircraft is not possible without implementation of special 

control devices. It is decided to maintain positive inherent 

directional stability, for clean configuration at the level of 

(Cnβ≥0.003). The lateral stability criterion is set to the level of a 

Northrop T-38 aircraft: (Clβ≤-0.075). However, the solution is 

typically restricted by directional stability rather than lateral 

stability. The minimum combat radius for a suppression of 

enemy air defense (SEAD) [32] mission profile is constrained 

to 750 km. Fig. 10 and Table 1 present details about the 

selected mission profile. The cruise altitude is 10 km. The 

range is maximized at segments C and I. A summary of all 

of the design requirements is presented in Table 2 regarding 

the design formulation.

Two design problems are solved in this study. The first one 

implements pure low-fidelity optimization and the second 

one use the GVFM aerodynamic model in an MDO loop. 

Table 1. Mission Profile Segments Table 1: Mission Profile Segments 

Segment Segment 

A Takeoff at sea level G Withdrawal at 540 kts (277.8 m/s) 

B Climb from sea level to cruise altitude H Climb from withdrawal to cruise altitude 

C Cruise (maximum range) I Cruise (maximum range) 

D Descent to 20,000 ft (6096 m) J Descent from cruise altitude to sea level 

E Penetration at 540 kts (277.8 m/s) K Landing at sea level 

F Combat: 1 180 turn at 50 kts (25.7 m/s)   

 
Table 2. UCAV Optimization Formulation

31 

Table 2: UCAV Optimization Formulation 

 Variable Value Function type 

Maximize: /L D   Variable Fidelity 

Subject to: SM    0.15 Variable Fidelity 

 SM    0.05 Variable Fidelity 

 combatR    750 km Variable Fidelity 

 /R C    125 m/s Variable Fidelity 

 maxM    0.90 Variable Fidelity 

 emptym   3500 kg Low fidelity 

 nC


   0.003 Low fidelity 

 lC


  -0.075 Low fidelity 

 trim   8 deg. Low fidelity 

 
trime   20 deg. Low fidelity 

 
trime    -20 deg. Low fidelity 

 fuselagel    5.5 m Exact 

 
1LE    

2LE  Exact 

 
  

(662~674)2017-141.indd   669 2018-01-05   오후 8:40:21



DOI: http://dx.doi.org/10.5139/IJASS.2017.18.4.662 670

Int’l J. of Aeronautical & Space Sci. 18(4), 662–674 (2017)

Table 2 indicates that 6 of a total of 14 functions are affected 

by variable fidelity aerodynamics. Objective function is 

aircraft’s lift-to-drag ratio. It is a common selection for 

various aerodynamic optimization problems. Lift-to-drag 

ratio directly affects the cruising range of an aircraft that is 

one of the important performance parameters of an aircraft. 

The objective function is the direct output of the aerodynamic 

analysis. In this research, it also provides a good metric for 

comparison of a low and variable fidelity based frameworks. 

3.2 Baseline Configuration and Design Variables

The Boeing X45C UCAV is selected as a baseline planform 

configuration. The baseline is a typical low aspect ratio 

flying wing aircraft. The wing has two segments: central and 

outer. The central segment serves as a fuselage and stores a 

power plant, payload, and avionics. The planform shape of 

the wing can be parameterized with nine design variables, 

which are shown in Fig. 12. An internal space volume is 

secured by constraints that restrict the intersection of the 

leading and trailing edges of the central segment with 

the payload and engine. Longitudinal and lateral control 

devices are joined and located on the outer segment of the 

wing. The elevon to chord ratio is 0.9, 0.85, and 0.8 at the 

root, middle, and tip chords, respectively. The airfoil in this 

configuration is fixed. The airfoil specifically designed [22] 

for UCAV cruise conditions at Mach 0.7 and 10-km altitude 

is used. The geometry of the airfoil is represented using the 

CST [33] method. The y coordinate for a given x coordinate 

normalized from 0 to 1 is estimated as:

18 
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Where [0;1]x  is the longitudinal coordinate of the airfoil, y  is the vertical coordinate of the 

airfoil with chord of 1.0, n  is the order of Bernstein polynomial, iA  is the shape control coefficient. 

For the current airfoil, n  is equal to 3, [0.1089,0.1356,0.1536,0.1425]A   for the upper airfoil 

curve, and [-0.1089,-0.1506,-0.1242,-0.0500]A   for the lower curve.  

 

Fig. 11: UCAV Airfoil Section 

The other components are the GE F404 turbofan engine, the fixed fuel mass of 3000 kg, 300 kg of 

uninstalled avionics, and 1132 kg of drop payload. 
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where x∈[0;1] is the longitudinal coordinate of the airfoil, 

y is the vertical coordinate of the airfoil with chord of 1.0, n   

is the order of Bernstein polynomial, Al is the shape control 

coefficient. For the current airfoil, n is equal to 3, A=[0.1089, 

0.1356, 0.1536, 0.1425] for the upper airfoil curve, and A=[-

0.1089, -0.1506, -0.1242, -0.0500] for the lower curve. 

The other components are the GE F404 turbofan engine, 

the fixed fuel mass of 3000 kg, 300 kg of uninstalled avionics, 

and 1132 kg of drop payload.

3.3 Framework Setup

Twenty-five DOE points were generated using JMP5® 

software [34] and Latin Hypercube with optimal spacing 

algorithm to initialize the scaling model. A C-type 

computational grid with (219×75×112) cells and a minimum 

wall distance of (y+=0.5) is generated. The CFD solver 

performs analysis at angles of attack of -2, 0, and 2 degrees 

to efficiently approximate the drag polar at cruise condition. 

The analysis flight conditions are Mach number 0.7 at the 

cruise altitude of 10 km. The pressure and temperature 

parameters are estimated based on international standard 

atmosphere modeling with Sutherland’s viscosity law. The 

solution typically converges within 7000 iterations using 

the Spalart-Allmaras turbulence model and a Courant 

number of 20. The SLSQP algorithm is implemented as an 

optimizer with a convergence tolerance of (10-6), while the 

global convergence tolerance of the GVFM algorithm is 
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Fig. 13: First-order Sensitivity Index 
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set to (10-4). An optimization loop takes approximately 1 

hour of computational time, and the CFD analysis takes 

approximately 6 hours per angle of attack. 

3.4 Sensitivity Analysis

Sensitivity analysis (SA) is often used for simplification 

of engineering design problems. SA helps to remove the 

variables that have no effect on the output. SALib [35] 

open source library was used to perform the SA. Sobol 

method performs the variance-based sensitivity analysis to 

predict the contribution of each input parameter. Variance-

based methods measure the sensitivity across the whole 

design space (global sensitivity). 250 configurations were 

generated within the 9-variable design space using Latin 

Hypercube Sampling. Values of the objective and constraint 

functions then calculated for each of the configuration. 

This information is then used by the global sensitivity 

analysis. The results calculated with implementation of the 

Sobol [36] method indicate that none of the variables can 

be removed from the design problem. Fig. 13 shows the 

first-order sensitivity index. The designer determines the 

threshold defining minimum sensitivity for a variable that 

can be removed. Usually, the variables with a sensitivity 

index of less than 5% are considered as insensitive and can 

be removed. The graph in Fig. 13 shows that several variables 

have high sensitivity for all functions, such as the root and 

middle chords. The wing twist angles have very little effect on 

most functions but a very high effect on (Cnβ) and the lift-to-

Table 3. UCAV Optimization Results Table 3: UCAV Optimization Results 

 LB UB Baseline Low-fidelity GVFM 

   

Low-

fidelity 

Result 

High-

fidelity 

Validation

Low-

fidelity 

Result 

High-

fidelity 

Validation  

( / )L D  16.84 16.25 19.27 18.6 18.83 

SM  0.05 0.15 0.1182 0.1258 0.0501 0.0729 0.1123 

nC


 0.003 0.0038 0.003 0.0030 

lC

	  -0.075 -0.109 -0.09 -0.088 

trim   8 9.75 8 8.00 

trime 	 -20 20 -8.81 -4.92 4.75 

emptym  3500 3551 3500 3492 

combatR 	 750 688.32 629.63 869.77 809.91 886.44 

/R C 	 125 139 138.7 143.7 142.9 146.4 

maxM 	 0.9 0.9372 0.9373 0.9439 0.9433 0.9398 

1LE 	 40 60 55 52.05 49.07 

2LE 	 40 60 55 46.08 49.02 

1c 	 6 7.5 6.91 6.39 6.28 

2c 	 3 5.25 4.15 3 3.03 

3c 	 0.5 1.8 1.1 1.24 0.66 

1l 	 1 1.8 1.44 1.79 1.79 

2l 	 3 3.2 3.11 3.13 3.20 

1 	 -4 0 0 -1.2449 -0.87 

2 	 -4 0 -2 -0.6869 -1.08 
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drag ratio. The total number of design variables for the UCAV 

conceptual design problem is nine. 

 

4. Results and Discussions

Both low-fidelity optimization and GVFM optimization 

were performed for comparison. Table 3 shows the results 

of the optimization. Fig. 14 shows the baseline and optimum 

UCAV configurations. In addition, the baseline and low-

fidelity optimum configurations were analyzed using high-

fidelity analysis. The result of the GVFM is equal to the high-

fidelity function value by algorithm definition, so additional 

analysis is not required. 

Comparison of the high- and low-fidelity analysis results 

for the baseline and the low-fidelity optimum configurations 

indicates that low-fidelity analysis overpredicts the value of 

(L/D) Aerodynamic analysis validation in section 2.2 exhibits 

similar behavior. A higher value of (L/D) leads to a 60 km 

longer combat radius. A static margin value is underpredicted 

by the low-fidelity analysis by a couple percent. The static 

margin of the baseline calculated using low-fidelity analysis 

is 11.8% versus 12.6% by CFD; similarly, the static margin is 

5% versus 7.3% for the low-fidelity optimum.

Low-fidelity optimization terminated with the objective 

function improvement of approximately 14.4%. (L/D) 

increased from 16.84 to 19.27 in terms of the low-fidelity 

46 

 

Fig. 14: Optimum UCAV Configurations 

  

Fig. 14. Optimum UCAV Configurations
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Fig. 16: Baseline and Optimum UCAV Drag Polar 

 

Fig. 16. Baseline and Optimum UCAV Drag Polar
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a) Baseline b) Low-fidelity optimum 

c) Variable fidelity optimum 

Fig. 15: Surface Pressure Distribution 

  

(c) Variable fidelity optimum

Fig. 15. Surface Pressure Distribution

                                   (a) Baseline                                                                  (b) Low-fidelity optimum
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values. High-fidelity analysis of the optimum configuration 

indicated a similar improvement of 14.4%, but the value 

of (L/D) predicted by CFD is lower. Variable fidelity 

optimization shows 16% objective function improvement 

compared to the baseline and 1.2% improvement compared 

to the low-fidelity optimum. These correlations can be 

observed in Fig. 16. The GVFM optimum has a lower (CD0
), 

while the induced drag coefficient is very similar to that 

of the low-fidelity optimum. Reduced (CD0
) leads to faster 

maximum speed, while smaller leading edge sweep angle 

leads slows it down. Combined these effects result in a very 

small increase of a maximum speed from Mach number of 

0.9373 to 0.9398. Both of the optimum configurations have 

lower induced drag than the baseline. Classical performance 

analysis equations (e.g. Breguet equation) show that aircraft 

range is proportional to (L/D). Higher values of (L/D) and 

slightly lower empty mass led to a 9.4% longer combat radius 

compared to the low-fidelity optimum: 886 km versus 810 

km. Variable fidelity optimization produced better results of 

optimization. Rate of climb is also highly affected by a lift-to-

drag ratio as can be concluded from equations (2-4). Rate of 

climb increased from 138.7 to 142.9 and 146.4 m/s. 

Regarding computational time, the GVFM algorithm 

evaluated the high-fidelity function 31 times until full 

convergence, including 25 times for the surrogate model 

initialization and 6 for the model refinement. A single run 

of high-fidelity analysis takes approximately 18 hours, and 

the single optimization loop takes approximately 1 hour. 

The total computational time required for UCAV design 

optimization using the variable fidelity algorithm is 23 full 

days on a desktop computer. This number is significantly 

lower than the number required for a pure high-fidelity 

optimization that can produce a result with similar accuracy. 

Pure low-fidelity optimization takes only 2 hours, but the 

level of accuracy is lower. 

 

5. Conclusions

An integrated framework for the design and optimization 

of a flying wing UCAV was developed and validated. The 

framework is mainly based on low-fidelity analysis methods 

and empirical equations. An automated process for high-

fidelity aerodynamic analysis of UCAV was developed 

and implemented in the design framework to increase the 

prediction accuracy of the analysis. The GVFM algorithm 

handles the interaction of high- and low-fidelity analysis 

disciplines for design optimization of a flying wing UCAV. 

A flying wing UCAV MDO problem was formulated and 

successfully solved using two different approaches. The 

first approach was optimization using a low-fidelity design 

framework. The second approach was variable fidelity 

optimization with MDO implementation of the GVFM 

algorithm. Variable fidelity optimization exhibited more 

design improvement with an acceptable computational cost 

compared to low-fidelity optimization. 
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