• Title/Summary/Keyword: Concentration boundary layer

Search Result 163, Processing Time 0.029 seconds

MULTISENSOR SATELLITE MONITORING OF OIL POLLUTION IN NORTHEASTERN COASTAL ZONE OF THE BLACK SEA

  • Shcherbak, Svetlana;Lavrova, Olga;Mytyagina, Marina;Bocharova, Tatiana;Krovotyntsev, Vladimir;Ostrovskiy, Alexander
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.989-992
    • /
    • 2006
  • The new approach to the problem of oil spill detection consisting in combined use of all available quasiconcurrent satellite information (AVHRR NOAA, TOPEX/Poseidon, Jason-1, MODIS Terra/Aqua, QuikSCAT) is suggested. We present the results of the application of the proposed approach to the operational monitoring of seawater condition and pollution in the coastal zone of northeastern Black Sea conducted in 2006. This monitoring is based on daily receiving, processing and analysis of data different in nature (microwave radar images, optical and infrared data), resolution and surface coverage. These data allow us to retrieve information on seawater pollution, sea surface and air-sea boundary layer conditions, seawater temperature and suspended matter distributions, chlorophyll a concentration, mesoscale water dynamics, near-surface wind and surface wave fields. The focus is on coastal seawater circulation mechanisms and their impact on the evolution of pollutants.

  • PDF

Sensibility Study for PBL Scheme of WRF-CMAQ (PBL Scheme에 대한 WRF-CMAQ 민감도 분석)

  • Moon, Nan-Kyoung;Kim, Soon-Tae;Seo, Ji-Hyun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.791-804
    • /
    • 2011
  • Numerical simulations were carried out to investigate the impact of PBL (Planetary boundary layer) scheme implemented in WRF on the result of meteorological fields and CMAQ modeling. 25-day period, representing high ozone concentration, was selected for the simulations. The three WRF domains covered East Asia region, Korean Peninsula and Seoul metropolitan area. The sensitivity of WRF-CMAQ modeling to the various PBL schemes was assessed and quantified by comparing model output and against observation from the meteorological and the air quality monitoring network within the domain. The meteorological variables evaluated included temperature, wind speed and direction over surface sites and upper air sounding sites. The CMAQ variables included gaseous species $O_3$ and $NO_x$ over monitoring stations. Although difference of PBL schemes implemented in WRF, they did not appreciably affect the WRF and CMAQ performance. There are partially differences between non-local and local mixing scheme, but are not distinct differences for the results of weather and air quality. It is suggested that impact of parameterization of vertical eddy diffusivity scheme in CMAQ also need to be researched in the future study.

Fabrication of Ti/Ir-Ru electrode by spin coating method for electrochemical removal of copper

  • Kim, Joohyun;Bae, Sungjun
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.646-653
    • /
    • 2019
  • Recovery of valuable metals in the industrial wastewater and sludge has attracted an attention owing to limited metallic resources in the earth. In this study, we firstly fabricated Ti/Ir-Ru electrodes by spin coating technique for effective recovery of Cu in electrowinning process. Two different Ti/Ir-Ru electrodes were fabricated using 100 and 500 mM of precursors (i.e., Ir-Ru). SEM-EDX and AFM revealed that Ir and Ru were homogenously distributed on the surface of Ti plate by the spin coating, in particular the electrode prepared by 500 mM showed distinct boundary line between Ir-Ru layer and Ti substrate. XRD, XPS, and cyclic voltammetry also revealed that characteristics of IrO2, RuO2, and TiO2 and its electrocatalytic property increased as the concentration of coating precursor increased. Finally, we carried out Cu recovery experiments using two Ti/Ir-Ru as anodes in electrowinning process, showing that both anodes showed a complete removal of Cu (1 and 10 g/L) within 6 h reaction, but much higher kinetic rate constant was obtained by the anode prepared by 500 mM. The findings in this study can provide a fundamental knowledge for surface characteristics of Ti/Ir-Ru electrode prepared by spin coating method and its potential feasibility for effective electrowinning process.

Analysis of the Influence of Urban Land Cover Changes on the Thermal Environment of the Atmospheric Boundary Layer Using Computational Fluid Dynamics Model (전산유체역학 모델을 이용한 도시 지표 피복 변화가 대기 경계층 열적 환경에 미치는 영향 분석)

  • Kim, Ji-Seon;Yoo, Jung-Woo;Na, Mun-Soo;Kim, Yong-Gil;Lee, Soon-Hwan
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1153-1170
    • /
    • 2020
  • With global warming and the rapid increase in urbanization accompanied by a concentration of population, the urban heat island effects (UHI) have become an important environmental issue. In this study, rooftop greening and permeable asphalt pavement were selected as measures to reduce urban heat island and applied to a simple virtual urban environment to simulate temperature change using ENVI-met. A total of five measures were tested by dividing the partial and whole area application of each measure. The results showed that the temperature range of the base experiment is 33.11-37.11 ℃, with the UTCI comfort level described as strong heat and very strong heat stress. A case applied permeable asphalt has a greater temperature difference than a rooftop greening case, the larger the area where each condition was applied, the greater the temperature change was.

Effects of Ocean Outfall for Elimination of the Anoxic Layer in Youngsan River Estuary (영산강 하구언에서 저 산소 층의 제거를 위한 해양방류구의 효과)

  • Kwon, Seok-Jae;Cho, Yang-Ki;Seo, Uk-Won
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.4
    • /
    • pp.259-268
    • /
    • 2005
  • There has been a growing interest in the elimination of anoxic layer in the Youngsan River Estuarybecause the anoxic water mass caused mainly by the inflow of fresh water from the sea wall might cause the mass reduction of benthos during summer. An ocean outfall system to discharge treated wastewater into sea water may be used as one of the effective and economical ways to eliminate the anoxic layer. The suitable ocean outfall design is generally proposed for the prediction of the buoyant jet behavior in the near field. The parameters including CTD and current data are taken into account f3r more reliable buoyant jet behavior calculation. One of the numerical models, CORMIX 1, approved by EPA is used herein for the prediction of the trajectorial variation of the cross-sectional salinity and DO concentration distribution on the calculated buoyant jet boundary according to the tidal periods. On the basis of the results, it is suggested that the single port outfall is a useful system to eliminate the anoxic layer. Proper strategies are also proposed for achieving desirable ambient conditions.

Vertical Distribution and Potential Risk of Particulate Polycyclic Aromatic Hydrocarbons in High Buildings of Bangkok, Thailand

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1865-1877
    • /
    • 2013
  • Vertical variations of polycyclic aromatic hydrocarbon (PAH) concentrations in $PM_{10}$ were investigated in order to assess the factors controlling their behavior in the urban atmosphere of Bangkok City, Thailand. Air samples were collected every three hours for three days at three different levels at Bai-Yok Suit Hotel (site-1 and site-2) and Bai-Yok Sky Hotel (site-3) in February $18^{th}-21^{st}$, 2008. The B[a]P concentration showed a value 0.54 fold, lower than the United Kingdom Expert Panel on Air Quality Standard (UK-EPAQS; i.e. 250 pg $m^{-3}$) at the top level. In contrast, the B[a]P concentrations exhibited, at the ground and middle level, values 1.50 and 1.43 times higher than the UK-EPAQS standard respectively. PAHs displayed a diurnal variation with maximums at night time because of the traffic rush hour coupled with lower nocturnal mixing layer, and the decreased wind speed, which consequently stabilized nocturnal boundary layer and thus enhanced the PAH contents around midnight. By applying Nielsen's technique, the estimated traffic contributions at Site-3 were higher than those of Site-1: about 10% and 22% for Method 1 and Method 2 respectively. These results reflect the more complicated emission sources of PAHs at ground level in comparison with those of higher altitudes. The average values of incremental individual lifetime cancer risk (ILCR) for all sampling sites fell within the range of $10^{-7}-10^{-6}$, being close to the acceptable risk level ($10^{-6}$) but much lower than the priority risk level ($10^{-4}$).

Characteristics of Black Carbon in PM2.5 Observed in Gwangju for Year 2008 and Examination of Filter Loading Effect (2008년 광주지역 검댕입자 특성 및 광학적 산란효과 보상)

  • Jung, Jung-Hoon;Park, Seung-Shik
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.4
    • /
    • pp.392-402
    • /
    • 2010
  • Black carbon (BC) concentrations were measured with an aethalometer (AE-16, 880 nm) at time interval of 5-min at an urban site of Gwangju over a year 2008. 24-hr filter-based integrated measurements of $PM_{2.5}$ particles were also made at the same site during the winter and summer intensive periods to test any optical loading bias in the raw BC data measured by aethalometer. BC concentration was higher in winter than in summer, possibly due to increase in emissions from energy consumption and poor dispersion with reduction of boundary layer in winter. Also temporal cycles of BC indicate that short-term transient spikes were common, occurring primarily during the rush-hour periods. A similar feature was also observed in diurnal concentration cycle of CO, mainly emitted from motor vehicles. When both low wind speed and weather patterns such as mist, haze and etc were combined, high BC concentrations frequently occurred. The amount of optical loading effect described by the "k" factor showed the seasonal variation, ranging from 0.0003 to 0.0036. This implies that optical loading effect is not seen at all times. From the comparison between the filter-based elemental carbon (EC) and aethalometer BC data, it was found that the loading compensated BC values were more reasonable than the raw BC ones reported from the aethalometer.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.

Interference of Sulphur Dioxide on Balloon-borne Electrochemical Concentration Cell Ozone Sensors over the Mexico City Metropolitan Area

  • Kanda, Isao;Basaldud, Roberto;Horikoshi, Nobuji;Okazaki, Yukiyo;Benitez-Garcia, Sandy-Edith;Ortinez, Abraham;Benitez, Victor Ramos;Cardenas, Beatriz;Wakamatsu, Shinji
    • Asian Journal of Atmospheric Environment
    • /
    • v.8 no.3
    • /
    • pp.162-174
    • /
    • 2014
  • An abnormal decrease in ozonesonde sensor signal occurred during air-pollution study campaigns in November 2011 and March 2012 in Mexico City Metropolitan Area (MCMA). Sharp drops in sensor signal around 5 km above sea level and above were observed in November 2011, and a reduction of signal over a broad range of altitude was observed in the convective boundary layer in March 2012. Circumstantial evidence indicated that $SO_2$ gas interfered with the electrochemical concentration cell (ECC) ozone sensors in the ozonesonde and that this interference was the cause of the reduced sensor signal output. The sharp drops in November 2011 were attributed to the $SO_2$ plume from Popocat$\acute{e}$petl volcano southeast of MCMA. Experiments on the response of the ECC sensor to representative atmospheric trace gases showed that only $SO_2$ could cause the observed abrupt drops in sensor signal. The vertical profile of the plume reproduced by a Lagrangian particle diffusion simulation supported this finding. A near-ground reduction in the sensor signal in March 2012 was attributed to an $SO_2$ plume from the Tula industrial complex north-west of MCMA. Before and at the time of ozonesonde launch, intermittent high $SO_2$ concentrations were recorded at ground-level monitoring stations north of MCMA. The difference between the $O_3$ concentration measured by the ozonesonde and that recorded by a UV-based $O_3$ monitor was consistent with the $SO_2$ concentration recorded by a UV-based monitor on the ground. The vertical profiles of the plumes estimated by Lagrangian particle diffusion simulation agreed fairly well with the observed profile. Statistical analysis of the wind field in MCMA revealed that the effect Popocat$\acute{e}$petl was most likely to have occurred from June to October, whereas the effect of the industries north of MCMA, including the Tula complex, was predicted to occur throughout the year.

Estimation of Atmospheric Deposition Velocities and Fluxes from Weather and Ambient Pollutant Concentration Conditions : Part I. Application of multi-layer dry deposition model to measurements at north central Florida site

  • Park, Jong-Kil;Eric R. Allen
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • The dry deposition velocities and fluxes of air pollutants such as SO2(g), O3(g), HNO3(g), sub-micron particulates, NO3(s), and SO42-(s) were estimated according to local meteorological elements in the atmospheric boundary layer. The model used for these calculations was the multiple layer resistance model developed by Hicks et al.1). The meteorological data were recorded on an hourly basis from July, 1990 to June, 1991 at the Austin Cary forest site, near Gainesville FL. Weekly integrated samples of ambient dry deposition species were collected at the site using triple-fiter packs. For the study period, the annual average dry deposition velocities at this site were estimated as 0.87$\pm$0.07 cm/s for SO2(g), 0.65$\pm$0.11 cm/s for O3(g), 1.20$\pm$0.14cm/s for HNO3(g), 0.0045$\pm$0.0006 cm/s for sub-micron particulates, and 0.089$\pm$0.014 cm/s for NO3-(s) and SO42-(s). The trends observed in the daily mean deposition velocities were largely seasonal, indicated by larger deposition velocities for the summer season and smaller deposition velocities for the winter season. The monthly and weekly averaged values for the deposition velocities did not show large differences over the year yet did show a tendency of increased deposition velocities in the summer and decreased values in the winter. The annual mean concentrations of the air pollutants obtained by the triple filter pack every 7 days were 3.63$\pm$1.92 $\mu\textrm{g}$/m3 for SO42-, 2.00$\pm$1.22 $\mu\textrm{g}$/m-3 for SO2, 1.30$\pm$0.59 $\mu\textrm{g}$/m-3 for HNO3, and 0.704$\pm$0.419 $\mu\textrm{g}$/m3 for NO3-, respectively. The air pollutant with the largest deposition flux was SO2 followed by HNO3, SO42-(S), and NO3-(S) in order of their magnitude. The sulfur dioxide and NO3- deposition fluxes were higher in the winter than in the summer, and the nitric acid and sulfate deposition fluxes were high during the spring and summer.

  • PDF