• Title/Summary/Keyword: Comsol

Search Result 203, Processing Time 0.02 seconds

Influences of Pump Spot Radius and Depth of Focus on the Thermal Effect of Tm:YAP Crystal

  • Zhang, Hongliang;Wen, Ya;Zhang, Lin;Fan, Zhen;Liu, Jinge;Wu, Chunting
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.458-465
    • /
    • 2019
  • The thermal effect and the light output of a laser crystal under different pumping depths were reported., Based on the thermal model of a single-ended pumped Tm:YAP crystal, the thermal stress coupled model used Comsol to theoretically calculate the effect of changing the pump spot size and pump depth on crystal heat distribution and stress distribution. The experimental results showed that the laser output power first increased and then decreased with increasing pump spot size. As the depth of focus increased, the laser output power first increased and then decreased. The experimental results were consistent with the theoretical simulation results. The theory of pump spot radius and depth of focus in this paper provided an effective simulation method for mitigating thermal effects, and provided theoretical supports for laser crystals to obtain higher laser output power.

Development of Microchip Removal Equipment Using Neodymium Permanent Magnets (네오디뮴 영구자석을 이용한 미세칩 제거장치의 개발)

  • Choi, Sung-Yun;Wang, Jun-hyeong;Wang, Duck Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2021
  • Machining operations require removal of chips to keep the coolant clean and fresh throughout the operation time. In this study, microchip removal equipment was developed using AutoCAD and CATIA programs for 3D modeling and 2D draft. In addition, the flow analysis and electromagnetic field analysis of the equipment were performed using the COMSOL Multiphysics program. The flow design of the coolant oil tank was realized on the basis of fluid analysis results. Further, on the basis of magnetic density analysis, a conveyer was designed for effectively removing metal microchips in the tank by using arrays of neodymium permanent magnets.

Modeling and Simulation of the Photocatalytic Treatment of Wastewater using Natural Bauxite and TiO2 doped by Quantum Dots

  • Becheikh, Nidhal;Eladeb, Aboulbaba;Ghazouani, Nejib
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.91-96
    • /
    • 2022
  • The photocatalytic degradation of salicylic acid takes place in several stages involving coupled phenomena, such as the transport of molecules and the chemical reaction. The systems of transport equations and the photocatalytic reaction are numerically solved using COMSOL Mutiphysics (CM) simulation software. CM will make it possible to couple the phenomena of flow, the transport of pollutants (salicylic acid) by convection and diffusion, and the chemical reaction to the catalytic area (bauxite or TiO2 doped by nanoparticles). The simulation of the conversion rate allows to correctly fit the experimental results. The temporal simulation shows that the reaction reaches equilibrium after a transitional stage lasting over one minute. The outcomes of the study highlight the importance of diffusion in the boundary layer and the usefulness of injecting micro-agitation into the microchannel flow. Under such conditions, salicylic acid degrades completely.

Stability analysis of the ball after contacting with the earth in the volleyball game: A multi-physics simulation

  • Yang Sun;Yuhan Lin;Yuehong Ma
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.809-823
    • /
    • 2023
  • In this work, dynamic stability analysis of the ball after contacting with the earth in the volleyball game is presented. Via spherical shell coordinate, the governing equations and general boundary conditions of the ball after contacting with the earth in the volleyball game is studied. Via Comsol multi-physics simulation, some results are presented and a verification between the outcomes is studied. Harmonic differential quadrature method (HDQM) is utilized to solve the dynamic equations with the aid of boundary nodes of the current spherical shell structure. Finally, the results demonstrated that thickness, mass of the ball and internal pressure of the ball alters the frequency response of the structure. One important results of this study is influence of the internal pressure. Higher internal pressure causes lower frequency and hence reduces the stability of the ball.

Numerical Examinations of Damage Process on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥슬래브의 손상 발생원인 수치모의 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Kim, Dong Hyun;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.4
    • /
    • pp.47-60
    • /
    • 2021
  • Recently, as the occurrence frequency of sudden floods due to climate variability increased, the damage of aging chuteway slabs of spillway are on the rise. Accordingly, a wide array of field survey, hydraulic experiment and numerical simulation have been conducted to find the cause of damage on chuteway slabs. However, these studies generally reviewed the flow characteristics and distribution of pressure on chuteway slabs. Therefore the derivation of damage on chuteway slabs was relatively insufficient in the literature. In this study, the cavitation erosion and hydraulic jacking were assumed to be the causes of damage on chuteway slabs, and the phenomena were reproduced using 3D numerical models, FLOW-3D and COMSOL Multiphysics. In addition, the cavitation index was calculated and the von Mises stress by uplift pressure distribution was compared with tensile and bending strength of concrete to evaluate the possibility of cavitation erosion and hydraulic jacking. As a result of numerical simulation on cavitation erosion and hydraulic jacking under various flow conditions with complete opening gate, the cavitation index in the downstream of spillway was less than 0.3, and the von Mises stress on concrete was 4.6 to 5.0 MPa. When von Mises stress was compared with tensile and bending strength of concrete, the fatigue failure caused by continuous pressure fluctuation occurred on chuteway slabs. Therefore, the cavitation erosion and hydraulic jacking caused by high speed flow were one of the main causes of damage to the chuteway slabs in spillway. However, this study has limitations in that the various shape conditions of damage(cavity and crack) and flow conditions were not considered and Fluid-Structure Interaction (FSI) was not simulated. If these limitations are supplemented and reviewed, it is expected to derive more efficient utilization of the maintenance plan on spillway in the future.

Process design for solution growth of SiC single crystal based on multiphysics modeling (다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계)

  • Yoon, Ji-Young;Lee, Myung-Hyun;Seo, Won-Seon;Shul, Yong-Gun;Jeong, Seong-Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.1
    • /
    • pp.8-13
    • /
    • 2016
  • A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

Optimal Sensor Placement of Boundaries and Robustness Analysis for Chemical Release Detection and Response of Near Plant (주변 사업장의 화학물질 확산 감지와 대응을 위한 경계면의 센서배치 최적화 및 강건성 분석)

  • Cho, Jaehoon;Kim, Hyunseung;Kim, Tae-Ok;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.104-111
    • /
    • 2016
  • Recently, the quantities of chemical material are increasing in chemical industries. At that time, release accident is increasing due to aging of equipment, mechanical failure, human error, etc. and industrial complexes found community properties in a specific area. For that matter, chemical release accident can lead to hight probability of large disaster. There is a need to analyze the boundaries optimal sensor placement calculated by selecting release scenarios through release condition and wether condition in a chemical process for release detection and response. This paper is to investigate chlorine release accident scenarios using COMSOL. Through accident scenarios, a numerical calculation is studied to determine optimized sensor placement with weight of detection probability, detection time and concentration. In addition, validity of sensor placement is improved by robustness analysis about unpredicted accident scenarios. Therefore, this verifies our studies can be effectively applicable on any process. As mention above, the result of this study can help to place mobile sensor, to track gas release based concentration data.

An Assessment of Air Sampling Location for Stack Monitoring in Nuclear Facility (원자력시설 굴뚝 내 공기시료채취 위치의 적절성 평가)

  • Lee, JungBok;Kim, TaeHyoung;Lee, JongIl;Kim, BongHwan
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.173-180
    • /
    • 2017
  • In this study, air sampling locations in the stack of the Advanced Fuel Science Building (AFSB) at the Korea Atomic Energy Research Institute (KAERI) were assessed according to the ANSI/HPS N13.1-1999 specification. The velocity profile, flow angle and $10{\mu}m$ aerosol particle profile at the cross-section as functions of stack height L and stack diameter D (L/D) were assessed according to the sampling location criteria using COMSOL. The criteria for the velocity profile were found to be met at 5 L/D or more for the height, and the criteria for the average flow angle were met at all locations through this assessment. The criteria for the particle profile were met at 5 L/D and 9 L/D. However, the particle profile at the cross-section of each sampling location was found to be non-uniform. In order to establish uniformity of the particle profile, a static mixer and a perimeter ring were modeled, after which the degrees of effectiveness of these components were compared. Modeling using the static mixer indicated that the sampling locations that met the criteria for the particle profile were 5-10 L/D. When modeling using the perimeter ring, the sampling locations that met the criteria for particle profile were 5 L/D and 7-10 L/D. The criteria for the velocity profile and the average flow angle were also met at the sampling locations that met the criteria for the particle profile. The methodologies used in this study can also be applied during assessments of air sampling locations when monitoring stacks at new nuclear facilities as well as existing nuclear facilities.

A Study on Thermal Deformations of AC7A Tire Mold Casting Material by Pre-Heating Temperatures of Permanent Casting System (금형주조장치의 예열온도에 따른 타이어 몰드용 AC7A 주조재의 열변형에 관한 연구)

  • Choi, Je-Se;Choi, Byung-Hui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2596-2603
    • /
    • 2013
  • The precision and endurance of tire mold are very important factors to decide the quality of tire. However, the investigation on the thermal deformation of tire mold has a lot of trouble because the tire mold is produced in airtight permanent casting material. In this study, the thermal deformations such as temperature, displacement and stress distributions inside the AC7A tire mold casting material were analyzed by numerical analysis according to the preheating temperature of permanent casting device. In order to verify the results of numerical analysis, the experiments for temperature measurement of the AC7A casting material were carried out under the same condition with numerical analysis. For the numerical analysis, "COMSOL Multiphysics" was used. The preheating temperatures were set up $150^{\circ}C$, $200^{\circ}C$, $250^{\circ}C$ and $300^{\circ}C$, respectively. The thermal deformations were calculated in each case. When the preheating temperature is $300^{\circ}C$, displacement and stress are the lowest with 0.25mm and 0.351GPa, but the temperature is the highest with $374.27^{\circ}C$. When the experimental results were compared with the numerical results, there were some temperature differences because of the latent heat by phase change heat transfer. However, the cooling patterns were almost similar except for the latent heat section.

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate (원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사)

  • Kim, Dae Chun;Chung, Kun Yong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.401-408
    • /
    • 2014
  • In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.