Acknowledgement
The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number "2349_2020__IF".
References
- Jeon, S., & Braun, P. V. Hydrothermal synthesis of Erdoped luminescent TiO2 nanoparticles. Chemistry of Materials, 15(6), 1256-1263 (2003). https://doi.org/10.1021/cm0207402
- Bera, D., et al., Photoluminescence of ZnO quantum dots produced by a sol-gel process. Optical Materials. 30(8): p. 1233-123 ( 9 ). 2008 https://doi.org/10.1016/j.optmat.2007.06.001
- Carrasco-Jaim, O.A., et al., Photocatalytic hydrogen production by biomimetic indium sulfide using Mimosa pudica leaves as template. international journal of hydrogen energy, 44(5): p. 2770-2783 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.043
- Chen, C., et al., Preparation and photocatalytic performance of graphene Oxide/WO3 quantum Dots/TiO2@ SiO2 microspheres. Vacuum, 164: p. 66-71 (2019). . https://doi.org/10.1016/j.vacuum.2019.03.002
- Chen, W.-T., et al., Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. Journal of catalysis,367: p. 27-42 ( 2018). . https://doi.org/10.1016/j.jcat.2018.08.015
- Chen, Y., H. Ding, and S. Sun, Preparation and characterization of ZnO nanoparticles supported on amorphous SiO2. Nanomaterials. 7(8): p. 217. ( 2017). https://doi.org/10.3390/nano7080217
- Chen, Z., et al., A sol-gel method for preparing ZnO quantum dots with strong blue emission. Journal of Luminescence. 131(10): p. 2072-2077. ( 2017). https://doi.org/10.1016/j.jlumin.2011.05.009
- Danish, R., F. Ahmed, and B.H. Koo, Rapid synthesis of high surface area anatase titanium oxide quantum dots. Ceramics International. 40(8): p. 12675-12680. (2014). https://doi.org/10.1016/j.ceramint.2014.04.115
- Desa, A.L., et al., A comparative study of ZnO-PVP and ZnO-PEG nanoparticles activity in membrane photocatalytic reactor (MPR) for industrial dye wastewater treatment under different membranes. Journal of Environmental Chemical Engineering, 7(3): p. 103143. ( 2019). https://doi.org/10.1016/j.jece.2019.103143
- Diab, K.R., et al., Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. Journal of Photochemistry and Photobiology A: Chemistry,. 365: p. 86-93. (2018). https://doi.org/10.1016/j.jphotochem.2018.07.040
- Dosado, A.G., et al., Novel Au/TiO2 photocatalysts for hydrogen production in alcohol-water mixtures based on hydrogen titanate nanotube precursors. Journal of catalysis,. 330: p. 238-254. ( 2015). https://doi.org/10.1016/j.jcat.2015.07.014
- Deng, Bona, et al. "Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue." Journal of Cleaner Production 244 ,118598. ( 2020). https://doi.org/10.1016/j.jclepro.2019.118598
- Ismail, N. J., Othman, M. H. D., Bakar, S. A., Kadir, S. H. S. A., Abd Aziz, M. H., Pauzan, M. A. B., ... & Rahman, M. A. Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A. Journal of Water Process Engineering, 37, 101504. (2020). https://doi.org/10.1016/j.jwpe.2020.101504
- Nurul Jannah, "Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A." Journal of Water Process Engineering 37 101504. (2020). https://doi.org/10.1016/j.jwpe.2020.101504
- Ismail, Nurul Jannah, et al. "Characterization of Bauxite as a Potential Natural Photocatalyst for Photodegradation of Textile Dye." Arabian Journal for Science and Engineering 44.12 10031-10040. (2019). https://doi.org/10.1007/s13369-019-04029-9
- Lu, Qing-hua, Yue-hua Hu, and Meng Wang. "Photocatalytic activity of bauxite-tailings supported nano-TiO 2." Journal of Central South University of Technology 17.4 ,755-759. (2010). https://doi.org/10.1007/s11771-010-0552-y
- Guevara, Hero Paul R., et al. "Recovery of oxalate from bauxite wastewater using fluidized-bed homogeneous granulation process." Journal of Cleaner Production 154 130-138. (2017). https://doi.org/10.1016/j.jclepro.2017.03.172
- El-Maghrabi, H.H., et al., Synthesis of mesoporous core-shell CdS@ TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production. Journal of Photochemistry and Photobiology A: Chemistry, 351: p. 261-270. (2017). https://doi.org/10.1016/j.jphotochem.2017.10.048
- Fakhroueian, Z., et al., Influence of modified ZnO quantum dots and nanostructures as new antibacterials. Advances in nanoparticles. 2(03): p. 247. (2013). https://doi.org/10.4236/anp.2013.23035
- Gao, G., et al., Selectivity of quantum dot sensitized ZnO nanotube arrays for improved photocatalytic activity. Phys Chem Chem Phys, 19(18): p. 11366-11372. (2017). https://doi.org/10.1039/C7CP01383C
- Gnanasekaran, L., R. Hemamalini, and K. Ravichandran, Synthesis and characterization of TiO2 quantum dots for photocatalytic application. Journal of Saudi Chemical Society. 19(5): p. 589-594. (2015). https://doi.org/10.1016/j.jscs.2015.05.002
- Gruzintsev, A., et al., Luminescence of two-dimensional ordered array of the ZnO quantum nanodots, obtained by means of the synthetic opal. Thin solid films. 459(1-2): p. 111-114. (2014). https://doi.org/10.1016/j.tsf.2003.12.109
- Guo, Z., et al., Synthesis of 3D CQDs/urchin-like and yolk-shell TiO2 hierarchical structure with enhanced photocatalytic properties. Ceramics International. 45(5): p. 5858-5865. (2019). https://doi.org/10.1016/j.ceramint.2018.12.052
- Iqbal, M., et al., Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Materials Science for Energy Technologies. 2(1): p. 41-45. (2019). https://doi.org/10.1016/j.mset.2018.09.002
- Javed, S., M. Islam, and M. Mujahid, Synthesis and characterization of TiO2 quantum dots by sol gel reflux condensation method. Ceramics International. 45(2): p. 2676-2679. 10. (2019). https://doi.org/10.1016/j.ceramint.2018.10.163
- Khan, R., et al., Low-temperature synthesis of ZnO quantum dots for photocatalytic degradation of methyl orange dye under UV irradiation. Ceramics international. 40(9): p. 14827-14831. (2014). https://doi.org/10.1016/j.ceramint.2014.06.076
- Kumaravel, V., et al., Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, (2019).
- Zubair, M., et al., Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2 nanotube arrays embedded with graphene quantum dots. Journal of CO2 Utilization. 26: p. 70-79. (2018). https://doi.org/10.1016/j.jcou.2018.04.004