DOI QR코드

DOI QR Code

Modeling and Simulation of the Photocatalytic Treatment of Wastewater using Natural Bauxite and TiO2 doped by Quantum Dots

  • Received : 2022.06.05
  • Published : 2022.06.30

Abstract

The photocatalytic degradation of salicylic acid takes place in several stages involving coupled phenomena, such as the transport of molecules and the chemical reaction. The systems of transport equations and the photocatalytic reaction are numerically solved using COMSOL Mutiphysics (CM) simulation software. CM will make it possible to couple the phenomena of flow, the transport of pollutants (salicylic acid) by convection and diffusion, and the chemical reaction to the catalytic area (bauxite or TiO2 doped by nanoparticles). The simulation of the conversion rate allows to correctly fit the experimental results. The temporal simulation shows that the reaction reaches equilibrium after a transitional stage lasting over one minute. The outcomes of the study highlight the importance of diffusion in the boundary layer and the usefulness of injecting micro-agitation into the microchannel flow. Under such conditions, salicylic acid degrades completely.

Keywords

Acknowledgement

The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number "2349_2020__IF".

References

  1. Jeon, S., & Braun, P. V. Hydrothermal synthesis of Erdoped luminescent TiO2 nanoparticles. Chemistry of Materials, 15(6), 1256-1263 (2003). https://doi.org/10.1021/cm0207402
  2. Bera, D., et al., Photoluminescence of ZnO quantum dots produced by a sol-gel process. Optical Materials. 30(8): p. 1233-123 ( 9 ). 2008 https://doi.org/10.1016/j.optmat.2007.06.001
  3. Carrasco-Jaim, O.A., et al., Photocatalytic hydrogen production by biomimetic indium sulfide using Mimosa pudica leaves as template. international journal of hydrogen energy, 44(5): p. 2770-2783 (2019). https://doi.org/10.1016/j.ijhydene.2018.12.043
  4. Chen, C., et al., Preparation and photocatalytic performance of graphene Oxide/WO3 quantum Dots/TiO2@ SiO2 microspheres. Vacuum, 164: p. 66-71 (2019). . https://doi.org/10.1016/j.vacuum.2019.03.002
  5. Chen, W.-T., et al., Performance comparison of Ni/TiO2 and Au/TiO2 photocatalysts for H2 production in different alcohol-water mixtures. Journal of catalysis,367: p. 27-42 ( 2018). . https://doi.org/10.1016/j.jcat.2018.08.015
  6. Chen, Y., H. Ding, and S. Sun, Preparation and characterization of ZnO nanoparticles supported on amorphous SiO2. Nanomaterials. 7(8): p. 217. ( 2017). https://doi.org/10.3390/nano7080217
  7. Chen, Z., et al., A sol-gel method for preparing ZnO quantum dots with strong blue emission. Journal of Luminescence. 131(10): p. 2072-2077. ( 2017). https://doi.org/10.1016/j.jlumin.2011.05.009
  8. Danish, R., F. Ahmed, and B.H. Koo, Rapid synthesis of high surface area anatase titanium oxide quantum dots. Ceramics International. 40(8): p. 12675-12680. (2014). https://doi.org/10.1016/j.ceramint.2014.04.115
  9. Desa, A.L., et al., A comparative study of ZnO-PVP and ZnO-PEG nanoparticles activity in membrane photocatalytic reactor (MPR) for industrial dye wastewater treatment under different membranes. Journal of Environmental Chemical Engineering, 7(3): p. 103143. ( 2019). https://doi.org/10.1016/j.jece.2019.103143
  10. Diab, K.R., et al., Facile fabrication of NiTiO3/graphene nanocomposites for photocatalytic hydrogen generation. Journal of Photochemistry and Photobiology A: Chemistry,. 365: p. 86-93. (2018). https://doi.org/10.1016/j.jphotochem.2018.07.040
  11. Dosado, A.G., et al., Novel Au/TiO2 photocatalysts for hydrogen production in alcohol-water mixtures based on hydrogen titanate nanotube precursors. Journal of catalysis,. 330: p. 238-254. ( 2015). https://doi.org/10.1016/j.jcat.2015.07.014
  12. Deng, Bona, et al. "Photocatalytic activity of CaTiO3 derived from roasting process of bauxite residue." Journal of Cleaner Production 244 ,118598. ( 2020). https://doi.org/10.1016/j.jclepro.2019.118598
  13. Ismail, N. J., Othman, M. H. D., Bakar, S. A., Kadir, S. H. S. A., Abd Aziz, M. H., Pauzan, M. A. B., ... & Rahman, M. A. Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A. Journal of Water Process Engineering, 37, 101504. (2020). https://doi.org/10.1016/j.jwpe.2020.101504
  14. Nurul Jannah, "Hydrothermal synthesis of TiO2 nanoflower deposited on bauxite hollow fibre membrane for boosting photocatalysis of bisphenol A." Journal of Water Process Engineering 37 101504. (2020). https://doi.org/10.1016/j.jwpe.2020.101504
  15. Ismail, Nurul Jannah, et al. "Characterization of Bauxite as a Potential Natural Photocatalyst for Photodegradation of Textile Dye." Arabian Journal for Science and Engineering 44.12 10031-10040. (2019). https://doi.org/10.1007/s13369-019-04029-9
  16. Lu, Qing-hua, Yue-hua Hu, and Meng Wang. "Photocatalytic activity of bauxite-tailings supported nano-TiO 2." Journal of Central South University of Technology 17.4 ,755-759. (2010). https://doi.org/10.1007/s11771-010-0552-y
  17. Guevara, Hero Paul R., et al. "Recovery of oxalate from bauxite wastewater using fluidized-bed homogeneous granulation process." Journal of Cleaner Production 154 130-138. (2017). https://doi.org/10.1016/j.jclepro.2017.03.172
  18. El-Maghrabi, H.H., et al., Synthesis of mesoporous core-shell CdS@ TiO2 (0D and 1D) photocatalysts for solar-driven hydrogen fuel production. Journal of Photochemistry and Photobiology A: Chemistry, 351: p. 261-270. (2017). https://doi.org/10.1016/j.jphotochem.2017.10.048
  19. Fakhroueian, Z., et al., Influence of modified ZnO quantum dots and nanostructures as new antibacterials. Advances in nanoparticles. 2(03): p. 247. (2013). https://doi.org/10.4236/anp.2013.23035
  20. Gao, G., et al., Selectivity of quantum dot sensitized ZnO nanotube arrays for improved photocatalytic activity. Phys Chem Chem Phys, 19(18): p. 11366-11372. (2017). https://doi.org/10.1039/C7CP01383C
  21. Gnanasekaran, L., R. Hemamalini, and K. Ravichandran, Synthesis and characterization of TiO2 quantum dots for photocatalytic application. Journal of Saudi Chemical Society. 19(5): p. 589-594. (2015). https://doi.org/10.1016/j.jscs.2015.05.002
  22. Gruzintsev, A., et al., Luminescence of two-dimensional ordered array of the ZnO quantum nanodots, obtained by means of the synthetic opal. Thin solid films. 459(1-2): p. 111-114. (2014). https://doi.org/10.1016/j.tsf.2003.12.109
  23. Guo, Z., et al., Synthesis of 3D CQDs/urchin-like and yolk-shell TiO2 hierarchical structure with enhanced photocatalytic properties. Ceramics International. 45(5): p. 5858-5865. (2019). https://doi.org/10.1016/j.ceramint.2018.12.052
  24. Iqbal, M., et al., Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Materials Science for Energy Technologies. 2(1): p. 41-45. (2019). https://doi.org/10.1016/j.mset.2018.09.002
  25. Javed, S., M. Islam, and M. Mujahid, Synthesis and characterization of TiO2 quantum dots by sol gel reflux condensation method. Ceramics International. 45(2): p. 2676-2679. 10. (2019). https://doi.org/10.1016/j.ceramint.2018.10.163
  26. Khan, R., et al., Low-temperature synthesis of ZnO quantum dots for photocatalytic degradation of methyl orange dye under UV irradiation. Ceramics international. 40(9): p. 14827-14831. (2014). https://doi.org/10.1016/j.ceramint.2014.06.076
  27. Kumaravel, V., et al., Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Applied Catalysis B: Environmental, (2019).
  28. Zubair, M., et al., Solar spectrum photocatalytic conversion of CO2 to CH4 utilizing TiO2 nanotube arrays embedded with graphene quantum dots. Journal of CO2 Utilization. 26: p. 70-79. (2018). https://doi.org/10.1016/j.jcou.2018.04.004