DOI QR코드

DOI QR Code

Process design for solution growth of SiC single crystal based on multiphysics modeling

다중물리 유한요소해석에 의한 SiC 단결정의 용액성장 공정 설계

  • Yoon, Ji-Young (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Myung-Hyun (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Won-Seon (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology) ;
  • Shul, Yong-Gun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jeong, Seong-Min (Energy and Environmental Division, Korea Institute of Ceramic Engineering and Technology)
  • 윤지영 (한국세라믹기술원 에너지환경소재본부) ;
  • 이명현 (한국세라믹기술원 에너지환경소재본부) ;
  • 서원선 (한국세라믹기술원 에너지환경소재본부) ;
  • 설용건 (연세대학교 화공생명공학과) ;
  • 정성민 (한국세라믹기술원 에너지환경소재본부)
  • Received : 2015.11.20
  • Accepted : 2015.12.07
  • Published : 2016.02.29

Abstract

A top-seeded solution growth (TSSG) is a method of growing SiC single crystal from the Si melt dissolved the carbon. In this study, multiphysics modeling was conducted using COMSOL Multiphysics, a commercialized finite element analysis package, to get analytic results about electromagnetic analysis, heat transfer and fluid flow in the Si melt. Experimental results showed good agreements with simulation data, which supports the validity of the simulation model. Based on the understanding about solution growth of SiC and our set-up, crystal growth was conducted on off-axis 4H-SiC seed crystal in the temperature range of $1600{\sim}1800^{\circ}C$. The grown layer showed good crystal quality confirmed with optical microscopy and high resolution X-ray diffraction, which also demonstrates the effectiveness of the multiphysics model to find a process condition of solution growth of SiC single crystal.

용액성장법에 의한 SiC 단결정 성장은 Si 또는 Si-금속합금의 융액으로부터 SiC를 성장시키는 방법으로서, 통상의 상부종자 용액성장법(Top Seeded Solution Growth)에서는 Si 융액을 담는 흑연도가니로부터 C가 Si 융액에 용해되고 용해된 C이 상부에 위치한 종자결정으로 이동하여 종자결정상에 SiC 형태로 재결정화하는 단계를 거쳐 SiC의 단결정을 성장시키는 과정을 거치게 된다. SiC 용액성장에 있어서는 SiC의 단결정성장을 위하여 흑연도가니의 형상, 크기, 재질 및 상대적 위치 배열 등 온도제어와 유체흐름 제어를 위해 다양한 공정변수를 선정해야한다. 본 연구에서는 용액성장공정의 설계를 위해 상용의 유한요소해석 패키지인 COMSOL Multiphysics를 이용하여 전자기장해석, 열전달해석, 유체해석에 대한 다중물리해석모델을 구축하고 이 모델을 이용하여 결정성장공정을 설계하였다. 해석결과에 기초하여 2 inch off-axis 4H-SiC 단결정을 종자결정으로 적용하여 $1700^{\circ}C$에서 상부종자 용액성장법에 의하여 SiC 단결정을 성장시켰다. 광학현미경 및 고분해능 X선회절분석을 통해 결정성을 분석한 결과 해당 성장조건에서 양호한 품질의 단결정이 성장함을 확인하였다. 이로써 본 연구에서 구축된 다중물리해석모델이 SiC의 용액성장 공정설계에 유효함을 확인하였다.

Keywords

References

  1. Yole Development, "SiC2012", Silicon carbide market analysis, Yole development, France (2012).
  2. A.A. Lebedev and V.E. Chelnokov, "Wide-gap semiconductors for high-power electronics", Semiconductors 33 (1999) 999. https://doi.org/10.1134/1.1187823
  3. Y.M. Tairov and V.F. Tsvetkov, "Investigation of growth processes of ingots of silicon carbide single crystals", J. Cryst. Growth 43 (1978) 209. https://doi.org/10.1016/0022-0248(78)90169-0
  4. V.E. Chelnokov, A.L. Syrkin and V.A. Dmitriev, "Overview of SiC power electronics", Diam. Relat. Mater. 6 (1997) 1480. https://doi.org/10.1016/S0925-9635(97)00120-9
  5. K. Kamei, K. Kusunoki, N. Yashiro, N. Okada, T. Tanaka and A. Yauchi, "Solution growth of single crystalline 6H, 4H-SiC using Si-Ti-C melt", J. Cryst. Growth 311 (2009) 855. https://doi.org/10.1016/j.jcrysgro.2008.09.142
  6. H.-Y. Shin, J.-H. Im and J.-I. Im, "Numerical analysis of sapphire crystal growth process using Ky and CZ method", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 59. https://doi.org/10.6111/JKCGCT.2013.23.2.59
  7. COMSOL: (accessed 15. 07. 01).
  8. J.H. Kim, Y.H. Park and Y.C. Lee, "Analysis of melt flows and remelting phenomena through numerical simulations during the kyropoulos sapphire single crystal growth", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 129. https://doi.org/10.6111/JKCGCT.2013.23.3.129
  9. F. Mercier, J.-M. Deddulle, D. Chaussende and M. Pons, "Coupled heat transfer and fluid dynamics modeling of high-temperature SiC solution growth", J. Cryst. Growth 312 (2010) 155. https://doi.org/10.1016/j.jcrysgro.2009.10.007
  10. ACerS-NIST Phase Equilibria Diagrams Version 3.2.1 CD-ROM Database, NIST Standard Reference Database 31; http://ceramics.org/publications-and-resources/ phase-equilibria-diagrams (accessed 15.07.01).
  11. F. Mercier and S.Nishizawa, "Solution growth of SiC from silicon melts: Influence of the alternative magnetic field on fluid dynamics", J. Cryst. Growth 318 (2011) 385. https://doi.org/10.1016/j.jcrysgro.2010.10.022
  12. J. Lefebure, J.-M. Deddulle, T. Ouisse and D. Chaussende, "Modeling of the growth rate during top seeded solution growth of SiC using pure silicon as a solvent", Cryst. Growth Des. 12 (2011) 909.
  13. F. Mercier and S. Nishizawa, "Numerical investigation of the growth rate enhancement of SiC crystal growth from silicon melts", Jpn. J. Appl. Phys. 50 (2011) 5603.
  14. K. Danno, H. Saitoh, A. Seki, H. Daikoku, Y. Fujiwara, T. Ishii, H. Sakamoto and Y. Kawaii, "High-speed growth of high-quality 4H-SiC bulk by solution growth using Si-Cr based melt", Mater. Sci. Forum 645 (2010) 13.