DOI QR코드

DOI QR Code

Numerical Simulation of Three Dimensional Fluid Flow Phenomena in Cylindrical Submerged Flat Membrane Bioreactor for Aeration Rate

원통 침지형 평막 생물반응기 내 산기량에 따른 3차원 유동현상에 관한 수치모사

  • Kim, Dae Chun (Graduate School of Energy and Environment, Seoul National University of Science & Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science & Technology)
  • 김대천 (서울과학기술대학교 에너지환경대학원) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2014.05.28
  • Accepted : 2014.06.11
  • Published : 2014.08.10

Abstract

In membrane bio-reactor (MBR), the aeration control is one of the important independent variables to decrease fouling and to save energy with shear stress change on the membrane surface. The paper was carried out for numerical simulation of 3-dimensional fluid flow phenomena of the cylindrical bioreactor with submerged flat membranes equipped in the center and supplied the air from the bottom by using the COMSOL program. The viscosity and temperature of solution were assumed to be constant, and the specific air demand based on permeate volume ($SAD_p$) defined as scouring air per permeate rates was used as a variable. The calculated CFD velocities were compared with those of the velocity meter measurement and video image analysis, respectively. The results were good agreement each other within 11% error. For fluid flow in the reactor the liquid velocity increased rapidly between the air diffuser and membrane module, but the velocity decreased during flowing of the membrane module. Also, the velocity increased as it was near from the reactor wall to the central axis. The calculated shear stress on the membrane surface showed the highest value at the center part of the module bottom side and increased as aeration rate increased. Especially, the wall shear stress increased dramatically as the aeration rate increased from 0.15 to 0.25 L/min.

분리막 생물반응기에서 산기량 제어는 반응기 내 유체흐름과 특히 막표면 근방에서의 전단응력을 변화시켜 막오염 감소 및 에너지 절약을 구현하는 중요 독립변수 중 하나이다. 본 연구에서는 원통형 생물 반응기 중심에 침지형 평막을 장착하고 하부에서 공기가 공급되는 3차원적 시스템에 대하여 "COMSOL"프로그램을 사용하여 수치해석하였다. 용액의 점도, 온도는 일정하다고 가정했으며 투과액 부피와 산기량의 비인 $SAD_p$를 변수로 사용하였다. 유속센서, 동영상 이미지분석으로 측정한 유속과 수치해석 결과는 11% 이내에서 일치함을 확인하였다. 반응기 내 유체의 흐름은 산기관과 막모듈 구간에서 급격하게 증가하였으나 막모듈을 지나면서 감소하였으며 반응조 벽에서 중심축 방향으로 갈수록 유속이 증가하는 경향을 보였다. 막 표면에서 계산된 전단응력은 하단 중앙부가 가장 크게 나타났으며 산기량이 증가할수록 전단응력이 증가하였다. 특히 산기량을 0.15에서 0.25 L/min로 증가할 경우 크게 증가함을 확인할 수 있었다.

Keywords

References

  1. S. Judd, The MBR Book: Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment, 90-101, Elsevier Science, Oxford, UK (2008).
  2. I. H. Cho and J. T. Kim, Trends in the technology and market of membrane bioreactors (MBR) for wastewater treatment and reuse and development rirections, Membrane J., 23, 24-44 (2013).
  3. K. Y. Chung and J. P. Kim, Energy Saving Membrane Technology, 25-61, A-jin Co., Seoul, Korea (2010).
  4. R. B. Bird, W. E. Sewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., 152-176, John Wiley & Sons, Inc., New York, USA (2001).
  5. X. Yang, H. Yu, R. Wang, and A. G. Fane, Optimization of microstructured hollow fiber design for membrane distillation applications using CFD modeling, J. Membrane Sci., 422, 258-270 (2012).
  6. Y. Wibisono, E. R. Cornelissen, A. J. B. Kemperman, W. G. J. van der Meer, and K. Nijmeijer, Two-phase flow in membrane processes: a technology with a future, J. Membrane Sci., 453, 566-602 (2014). https://doi.org/10.1016/j.memsci.2013.10.072
  7. A. Drews, H. Prieske, E. L. Meyer, G. Senger, and M. Kraume, Advantageous and detrimental effects of air sparging in membrane filtration: bubble movement, exerted shear and particle classification, Desalination, 250, 1083-1086 (2010). https://doi.org/10.1016/j.desal.2009.09.113
  8. H. C. Shin and K. Y. Chung, Numerical analysis of concentration polarization for spacer configuration in plate type membrane module, App. Chem. Eng., 22(6), 703-710 (2011).
  9. Y. Noh, Turbulence, 20-65, Sigma Press, Seoul, Korea (2000).
  10. COMSOL Inc., COMSOL Multiphysics User's Guide, 34-67, ver. 4.3, Palo Alto, USA (2012).
  11. S. Becker, A. Sokolichin, and G. Eigenberger, Gas-liquid flow in bubble columns and loop reactors: part II. comparison of detailed experiments and flow simulations, Chem. Eng. Sci., 49, 5747-5762 (1994). https://doi.org/10.1016/0009-2509(94)00290-8
  12. D. Kuzmin and S. Turek, Flux correction tools for finite elements. J. Comput. Phys., 175, 525-558 (2002). https://doi.org/10.1006/jcph.2001.6955
  13. B. E. Launder and D. B. Spalding, The numerical computation of turbulent flows, Comp. Meth. Appl. Meth. Eng., 3, 269-289 (1974). https://doi.org/10.1016/0045-7825(74)90029-2
  14. F. L. Wattendorf and A. M. Kuethe, Investigations on turbulent flow by means of the hot-wire anemometer, Physics, 5, 153 (1934). https://doi.org/10.1063/1.1745244
  15. W. L. McCabe, J. C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., 51-58, McGraw-Hill, New York, USA (2001).