In this paper, the effect of computing time-delay in the real-time digital fuzzy control systems is investigated and the design methodology of a real-time digital fuzzy controller(DFC) to overcome the problems caused by it is presented. We propose the fuzzy feedback controller whose output is delayed with unit sampling period. The analysis and the design problem considering computing time-delay is very easy because the proposed controller is syncronized with the sampling time. The stabilization problem of the digital fuzzy control system is solved by the linear matrix inequality(LMI) theory. Convex optimization techniques are utilized to find the stable feedback gains and a common positive definite matrix P for the designed fuzzy control system Furthermore, we develop a real-time fuzzy control system for backing up a computer-simulated truck-trailer with the consideration of the computing time-delay. By using the proposed method, we design a DFC which guarantees the stability of the real time digital fuzzy control system in the presence of computing time-delay.
By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.
To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.
본 논문에서는 이동 클라우딩 환경에서 LBS(Location Based Services)를 지원하는 핸드오프 기법을 제안한다. 이동 클라우딩 컴퓨팅은 핸드오프 지연과 함께 재인증 지연이 발생한다. 단말이 새로운 AP에 도착하면 클라우드 서버로부터 다시 인증을 받는 절차가 필요하다. 하지만 위치정보를 이동 단말의 재인증에 사용하면 인증에 따른 지연시간을 감축시킬 수 있다. 이를 위해 제안하는 기법은 위성신호를 받지 못하는 실내에서 사용할 수 없는 GPS기반 기술을 보완할 수 있는 WiFi 기반의 위치정보 서버에 AP의 위치정보를 구축하고 핸드오프 수행 시에 위치정보를 수집하도록 하였다. 또한 핸드오프 시에 위치정보 요청을 분리하여 처리하도록 하여 핸드오프지연 시간의 증가 없이 LBS 처리를 가능하도록 하였다. 성능 분석은 핸드오프 지연시간과 위치정보 처리시간과 이에 따라 발생하는 데이터의 양을 기존의 클라우드 환경에서의 핸드오프 기법과 비교 분석하였다. 제안한 기법은 핸드오프 시에 위치정보 서버를 통해 위치정보를 수신하도록 하여 LBS 처리에 따른 지연시간이 낮았으며 핸드오프 수행시간이 증가하지 않는 것을 확인하였다.
본 논문에서는 이동환경에서 이동단말이 핸드오프 시간과 오프로딩 시간을 측정하여 오프로딩의 수행을 판단하는 오프로딩 지연기법을 제안한다. 제안한 기법은 이동단말에서 핸드오프와 오프로딩 지연시간을 비교하여 오프로딩을 결정할 수 있도록 하여 고정노드를 대상으로 구현된 클라우드 컴퓨팅환경의 구조의 변경 없이 이동환경 클라우드 컴퓨팅을 지원한다. 효율성 분석을 위해 기존 연구에서 사용하는 서버와 단말의 에너지 소비측정을 사용하여 기존 방법과 에너지 소비를 비교 분석하였다. 모의실험 결과 오프로딩 지연 기법은 기존 방법보다 에너지 소비를 감소시키면서 유사한 작업수행 시간을 보이는 것을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제18권1호
/
pp.211-232
/
2024
In this paper, we consider the resource allocation and offloading decisions of device-to-device (D2D) cooperative UAV-assisted mobile edge computing (MEC) system, where the device with task request is served by unmanned aerial vehicle (UAV) equipped with MEC server and D2D device with idle resources. On the one hand, to ensure the fairness of time-delay sensitive devices, when UAV computing resources are relatively sufficient, an optimization model is established to minimize the maximum delay of device computing tasks. The original non-convex objective problem is decomposed into two subproblems, and the suboptimal solution of the optimization problem is obtained by alternate iteration of two subproblems. On the other hand, when the device only needs to complete the task within a tolerable delay, we consider the offloading priorities of task to minimize UAV computing resources. Then we build the model of joint offloading decision and power allocation optimization. Through theoretical analysis based on KKT conditions, we elicit the relationship between the amount of computing task data and the optimal resource allocation. The simulation results show that the D2D cooperation scheme proposed in this paper is effective in reducing the completion delay of computing tasks and saving UAV computing resources.
Since the Global Navigation Satellite System (GNSS) signal received from the low Earth orbit (LEO) satellite is only affected by the upper ionosphere, the magnitude of the ionospheric delay of Global Positioning System (GPS) signal received from ground user is different. Therefore, the ground-based two-dimensional ionospheric model cannot be applied to LEO satellites. The NeQuick model used in Galileo provides the ionospheric delay according to the user's altitude, so it can be used in the ionospheric model of the LEO satellites. However, the NeQuick model is not suitable for space receivers because of the high computational cost. A simplified NeQuick model with reduced computing time was recently presented. In this study, the computing time of the NeQuick model and the simplified NeQuick model was analyzed based on the GPS Klobuchar model. The NeQuick and simplified NeQuick model were applied to the GNSS data from GRACE-B, Swarm-C, and GOCE satellites to analyze the performance of the ionospheric correction and positioning. The difference in computing time between the NeQuick and simplified NeQuick model was up to 90%, but the difference in ionospheric accuracy was not as large as within 4.5%.
In this paper, we propose a task distribution scheme in fog computing environment considering opportunistic fog computing nodes. As latency is one of the important performance metric for IoT(Internet of Things) applications, there have been lots of researches on the fog computing system. However, since the load can be concentrated to the specific fog computing nodes due to the spatial and temporal IoT characteristics, the load distribution should be considered to prevent the performance degradation. Therefore, this paper proposes a task distribution scheme which considers the static as well as opportunistic fog computing nodes according to their mobility feature. Especially, based on the task requirements, the proposed scheme supports the delay sensitive task processing at the static fog node and delay in-sensitive tasks by means of the opportunistic fog nodes for the task distribution. Based on the performance evaluation, the proposed scheme shows low service response time compared to the conventional schemes.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권7호
/
pp.3100-3116
/
2016
With the rapid development of urban traffic system and fast increasing of vehicle numbers, the traditional centralized ways to generate the source-destination shortest path in terms of travel time(the optimal path) encounter several problems, such as high server pressure, low query efficiency, roads state without in-time updating. With the widespread use of smart cameras in the urban traffic and surveillance system, this paper maps the optimal path finding problem in the dynamic road network to the shortest routing problem in the smart camera networks. The proposed distributed optimal path generation algorithm employs the delay routing and caching mechanism. Real-time route update is also presented to adapt to the dynamic road network. The test result shows that this algorithm has advantages in both query time and query packet numbers.
IEIE Transactions on Smart Processing and Computing
/
제4권6호
/
pp.391-402
/
2015
In this paper, we present implementation of backward movement control of truck-trailer vehicles using a fuzzy mode-based control scheme considering practical constraints and computational overhead. We propose a fuzzy feedback controller where output is predicted with the delay of a unit sampling period. Analysis and design of the proposed controller is very easy, because it is synchronized with sampling time. Stability analysis is also possible when quantization exists in the implementation of fuzzy control architectures, and we show that if the trivial solution of the fuzzy control system without quantization is asymptotically stable, then the solutions of the fuzzy control system with quantization are uniformly ultimately bounded. Experimental results using a toy truck show that the proposed control system outperforms a conventional system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.