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ABSTRACT

In this paper, the effect of computing time-delay in the real-time digital fuzzy control systems is
investigated and the design methodology of a real-time digital fuzzy controller(DFC) to overcome the
problems caused by it is presented. We propose the fuzzy feedback controller whose output is delayed with
unit sampling period. The analysis and the design problem considering computing time-delay is very easy
because the proposed controller is syncronized with the sampling time. The stabilization problem of the
digital fuzzy control system is solved by the linear matrix inequality(LMI) theory. Convex optimization
techniques are utilized to find the stable feedback gains and a common positive definite matrix P for the
designed fuzzy control system. Furthermore, we develop a real-time fuzzy control system for backing up a
computer-simulated truck-trailer with the consideration of the computing time-delay. By using the proposed
method, we design a DFC which guarantees the stability of the real time digital fuzzy control system in the

presence of computing time-delay.

1. Introduction

A real-time digital fuzzy control can be thought of as
a three-stage process : data acquisition from sensors,
data processing to generate control command, and
outputting the results to actuators. Although each of the
three stages will take time to complete, this paper is
concerned only with the time taken by the most
complicated stage, data processing, since the other two
are much simpler and more static. More precisely, the
time taken to execute programs that implement control
algorithms, computing time-delay is the subject of this
paper. For a given fixed sampling interval the effect of
computing time-delay are classified into the delay and
loss problems. The delay problem occur when the
computing time-delay is nonzero but smaller than the
sampling interval, while the loss problem occur when
the computing time-delay is greater than, or equal to,
the sampling interval, i.e., loss of the control output. We
will focus on the delay problem on the performance of
the fuzzy control systems since the computing time-
delay is a piecewise continuous, random variable which
is usually smaller than the corresponding sampling
interval. Note that due to its randomness, the computing
time-delay is totally different from system delay, which
is not the subject of this paper.

The control problems for the real time digital fuzzy
control systems with the time-delay in computing the
control output have been paid attention over a few
decades since the computing time-delay is frequently a
source of instability and encountered in the
implementations of the various engineering systems.
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Extensive research has already been done in the
conventional control to find the solutions [1,2].
However, for fuzzy control systems, there are few
studies on the stabilization problem especially for real-
time control systems considering computing time-
delay [3,4]. A linear controller like PID controllers has
a short computing time-delay in calculating the output
since its algorithm is so simple. However, in the case
of a complex algorithm like fuzzy or neural networks,
a considerable time-delay in computing the output can
occur because so many calculations are needed to get
the output. Nevertheless, the most conventional discrete
time fuzzy controllers are the ideal controllers not
considering the problems in the digital implementation,
computing time-delay. Recently, to deal with the time-
delay, the design methods of the fuzzy control systems
with higher order have been proposed in [5]. However
the structure of the control system is very complex
because the design of higher order fuzzy rule-base is
very difficult.

In this paper, we raise the computing time-delay
problems when control algorithms are implemented on
a digital computer and to remedy these problems, the
real-time digital fuzzy control system considering
computing time-delay is developed and its stability
analysis and design method are proposed. We use the
discrete Takagi-Sugeno(TS) fuzzy model and parallel
distributed compensation(PDC) conception for the
controller[6-9]. And we follow the linear matrix
inequality(LMI) approach to formulate and solve the
problem of stabilization for the fuzzy controlled
systems. The analysis and the design of the discrete
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time fuzzy control systems by LMI theory are
considered in [10-12].

If the considerable computing time-delay exists the
analysis and the design of the controller are very
difficult since the time-delay makes the output of the
controller not synchronized with the sampling time. We
propose the PDC-type fuzzy feedback controller whose
output is delayed with unit sampling period and
predicted using current states and the control input to
the plant at previous sampling time. In this scheme, the
computing time-delay is approximated to be one
sampling period. The analysis and the design of the
controller are very easy because the output of the
proposed controller is synchronized with the sampling
time. Therefore, the proposed control system can be
designed using the conventional methods for stabilizing
the discrete time fuzzy systems and the feedback gains
of the controller can be obtained using the concept of
the LMI feasibility problem.

The proposed real-time DFC is applied to backing up
control of a computer-simulated truck-trailer considering
the computing time-delay in the digital implementation
of the system to verify the validity and the effectiveness
of the control scheme. Note that the term Digital fuzzy
control system is used corresponding to the existing
“Discrete time fuzzy system’ to emphasize the
proposed aspect that the problem in the real-time
implementation of the controller, computing time-delay
is considered.

2. Discrete TS Model Based Fuzzy Control

In the discrete time TS fuzzy systems without control
input, the dynamic properties of each subspace can be
expressed as the following fuzzy IF-THEN rules[6].

Rule i : If x,(k) is M};...and x,(k) is M,, .

THEN x(k+1) = Gx(k) =l 3

where x(k) = [x;(k) x,(k) ... x, (k)17 € R" denotes the
state vector of the fuzzy system, r is the number of the
IF-THEN rules, and M; is fuzzy set.

If the state x(k) is given, the output of the fuzzy
system expressed as the fuzzy rules of Eq. (1) can be
inferred as follows.

3 w(k)Gx(k)

x(k+1) = == = ¥ h ()G
3 wlb s )
ld W,‘(k)
where w;(k) = T My(x(k)), h(k)=—"——
i=1 3 wik)
i=1

A sufficient condition for ensuring the stability of the
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fuzzy system(2) is given in Theorem 1.

Theorem 1 : The equilibrium point for the discrete
time fuzzy system (2) is asymptotically stable in the
large if there exists a common positive definite matrixP
satisfying the following inequalities.

GTPG-P<0,i=12,..,r 3)

Proof : The proof can be given in [7].

In the discrete time fuzzy system with control input to
the plant, the dynamic properties of each subspace can
be expressed as the following fuzzy IF-THEN rules.

Rule i : If x,(k) is M;,...and x,(k) is M, -
i=1,2,...,r
THEN x(k+1) = Ax(B)+ Bu(k) @)

where

x(k) = [x,(0) x,(k) - x,(0)]T ER” denotes the state
vector of the fuzzy system.

u(®) = [ (k) w(k) * u,(k)]"ER™ denotes the input
of the fuzzy system.

r is the number of the fuzzy IF-THEN rules, and M
is the fuzzy set.

If the set of (x(k), u(k)) is given the ouiput of the
fuzzy system (4) can be obtained as follows.

S, w4 (k) + Bas(ky}

x(e+1) = S
3wk
. i=1 (5)
= 5 A + Bu(h)}
where

0 = TLM,(x(0), and h(k) = -0
w, (k) = Ax k), and h (k) = .

0 = T MG : £ wik)

1

i=

In PDC, the fuzzy controller is designed distributively
according to the corresponding rule of the plant[9].
Therefore, the PDC for the plant (4) can be expressed as
follows.

Rulej : If x,(k) is M},..
THEN u = -Fx(k)

.and x,(k) is M,,
* P i=1,2,.0,r

©

The fuzzy controller output of Eq. (6) can be inferred
as follows.

T wBFxk)
u(k) = =———= - 3 (O Fx(k) 0
3, wi(k) j=1
i=1

where A(k) is the same function in Eq. (5).
Substituting Eq. (7) into Eq. (5) gives the following
closed loop discrete time fuzzy system.
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(k+1)

i M‘ I Mw

h (k){A x(k)~B, Z h (k)ij(k)}

i

A (k)hj(k){Ai—Bi@}x<k) ®

i

Defining G; = A4; — B/;F,, the following equation is
obtained.

x(k+1) = z h () (k)G x (k)

i=1

+25 h(bh (k){

i<j

————1}x(k) ©)

Applying Theorem 1 to analyze the stability of the
discrete time fuzzy system (9), the stability condition of
Theorem 2 can be obtained.

Theorem 2 : The equilibrium point of the closed loop
discrete time fuzzy system (9) is asymptotically stable
in the large if there exists a common positive definite
matrix P which satisfies the following inequalities for
all ; and ; except the set (7, j) satisfying h{k) h(k)=0.

GIPG,-P<0 i=12,..,r (10a)

G, +GN\T /G, .+G.;
(—’Lz—-’-) P(—’LTHJ—Pso, 1<i<j<r  (10b)
Proof : The proof can be given in [7].
If B=B,;=B,="- =B, in the plant (5) is satisfied,
the closed loop system (8) can be obtained as follows.

x(k+1) = ﬁlh,.(k){A,x(k)—Bﬁl hj(k)ij(k)}
i= Jj=

= 3 h(k){4;-BF}x(h) = _ilhi(k)c,.x(k) an
= i=
where G; = A, — BF;
Hence, Theorem 1 can be applied to the stability
analysis of the closed loop system (11).

3. LMI Approach for Fuzzy System Design

To prove the stability of the discrete time fuzzy
control system by Theorem 1 and Theorem 2, the
common positive definite matrix P must be solved. LMI
theory can be applied to solving P [13]. LMI theory is
one of the numerical optimization techniques. Many of
the control problems can be transformed into the LMI
problems and the recently developed Interior-point
method can be applied to solving numerically the
optimal solution of these LMI problemsf14].

Definition 1: linear matrix inequility can be defined
as follows.

F(x) = Fy+ 3 x,F,;>0

i=1

(12)
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where x=x{x, x, " x,)7 is the parameter, the
symmetric matrices F;=FL €R"™" i=0, -, m are
given, and the inequality symbol “> 0" means that F(x)
is the positive definite matrix.

LMLI of Eq. (12) means the convex constraints forx.
Convex constraint problems for the various x can be
expressed as LMI of Eq. (12). LMI feasibility problem
can be described as follows.

LMI feasibility problem : The problem of finding
¥ which satisfies F(x**?)>Q or proving the
unfeasibility in the case that LMI F(x)>0 is given.

And the stability condition of Theorem 1 can be
transformed into the LMI feasibility problem as follows.

LMI feasibility problem about the stability condition
of Theorem 1 : The problem of finding P which
satisfies the LMIs, P> 0 and G’ PG,— P<0,i=1, 2,

*, ¥ or proving the unfeasibility in the case that 4,€
Rexn =1, 2, -, r are given.

If the design object of a controller is to guarantee the
stability of the closed loop system (5), the design of the
PDC fuzzy controller(7) is equivalent to solving the
following LMI feasibility problem wusing Schur
complements[13].

LMI feasibility problem equivalent to the PDC
design problem (Case I) : The problem of finding X > @
and M,, M,, , M, which satisfy the following
inequalities.

X {AX-BM} >0, i=1,2,..,r
AX-BM, X

S ;
X E{AiX"' AjX—BiIWJ.-BjMi} N
1 b
5{AX+ A X-BM-B M) X
where X=P!, M,=F.X, M,=FX, ---, and M,= F.X.

The feedback gain matrices F\, Fz, =+, F, and the
common positive definite matrix 2 can be given by the
LMI solutions, X and M,, AM,, ---, M, as follows.

P=X"F =M X", F,=M,X", ..., and F,=M.X"'

If B=B,=B,=-+ =B, is satisfied, the design of the
PDC fuzzy contxoller(7) is equivalent to solving the
following LMI feasibility problem.

LMI feasibility problem equivalent to the PDC
design problem (Case II) : The problem of finding
X>0 and M,, M,, ---, M, which satisfy the following
equations.

X A4X-BM} >0 i=1,2,...,r
AX-BM, X

where X= P, M= FX, M,=F,X, -, and M,= F.X.



gl A 2 ASAIE"HEE] =74 2000, Vol. 10, No. 5

The feedback gain matrices F), F,, ***, F, and the
common positive definite matrix P can be given by the
IMI solutions, X and M, M,, ---, M., as follows.

P=X"F=MX"', F,=M,X"', ... and F,=M X"

4. Real-Time Digital Fuzzy Control System
considering Computing Time-Delay

As mentioned earlier, we are interested in analyzing
the effect of the computing time-delay that results from
the implementation of a control algorithm on a digital
computer. The presence of the computing time-delay in
a control system can be represented by a delay element
after the D/A converter and hold circuit, as shown in
Fig. 1. Hence the analysis of the effect of the computing
time-delay must be done in a continuous-time domain.

When control algorithms are implemented on a
digital computer, a considerable computing time-delay
can occur due to the complex data processing. Let7 be
defined as this computing time-delay. In the real-time
digital fuzzy control systems, the output of the discrete
fuzzy controller is applied to the plant after the

X{k) U{k)

computing time-delay 7.

Because the time-delay makes the output of the
controller not synchronized with the sampling time, the
analysis and the design of the controller are very
difficult. In this paper, DFC which has the following
fuzzy rules is proposed to consider the computing time-
delay.

Rule j: If x,(k) is M;,...and x,(k) is M,

i=1,2,
THEN u(k+1) = Dju(k)+ Ex(k) l

U 4

(13)

The output of DFC (13) can be inferred as follows.
3 w0 {Du(k) + Epx(k)}

w(k+1) ==

jgl Wj(k)

= 5 h(R{Dyu(k) + Ex(k)} (14)
j=1
The general timing diagram of fuzzy control loop in
a continuous-time domain is shown in Fig. 2. T is the
sampling period of the control loop, 7, and 7, are the
delay made by the data processing from a sensor system

U

- D/A

Hold circuit

Discrete Fuzzy
Controller

X(t) / X(k)
Controlled

Ts

Computing B

Time-delay Plant

Fig. 1. A real-time digital fuzzy control system in the presence of computing time-delay

Sensor System
Delay 7,

Controller
Delay =,

v
£

Time

.

kT

(k+1)T

T=T,41,

Control Loop
Overall Delay

Control Loop
Sampling Period T

Fig. 2. Timing Diagram of the Fuzzy Control Loop

Ideal Controller

Delayed Controller

Proposed Controller

! >

‘__ _________________
Time Delay ©

time

Sampling

kT kT+t

Time T |

H
&+1)T

Fig. 3. Output Timing of the Controllers (three cases)
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and a fuzzy controller respectively. Therefore the output
of the controller is applied to the plant after overall
dealy 1=1, + 1.

The output timing of a ideal controller, a delayed
controller, and the proposed controller is shown in the
Fig. 3. In the ideal controller, it is assumed that there is
no computing time-delay. When this controller is
implemented in real-time digital control systems, the
problem of the computing time-delay 7 cannot be
avoidable. However, the analysis and the design of this
system with delayed controller are very difficult since
the output of controller is not syncronized with the
sampling time.

On the other hand, the analysis and the design of the
proposed controller are very easy because the controller
output is syncronized with the sampling time delayed
with unit sampling period. Using this proposed
controller, we can realize a control algorithm during the
time interval T— 7, in Fig. 2. In this time interval, a
complex algorithm such as not only fuzzy algorithm but
also nonlinear control algorithm can be sufficiently
implemented in real time.

Defining the new state vector as w(k) = hﬂ , the

[]
design problem of the DFC is transformed into the
design problem of the PDC fuzzy controller.

PDC design problem equivalent to DFC design
problem

The problem of designing the PDC fuzzy controller

v(k) = _jghj(k)F}w(k) in the case that the fuzzy plant

w(k+ =3 n(o{Awk) +Bv(b)} is given.
i=1

- _|4;B] w_10 F
where 4, =|"¢"4, B=|"|, and F;=~|E. D,
45l i 7y

Then, we combining the fuzzy plant with the PDC
fuzzy controller the closed loop system can be given as

wk+1) = 3 h(k)Gw(k) (15)
i=1

where G, = [Ai B{l
E; D;
The stability condition of the closed loop system (15)
becomes the same as the sufficient condition of Theorem
1 and the stability can be determined by solving LMT
feasibility problem about the stability condition of
Theorem 1. Also, the design problem of the DFC
guaranteeing the stability of the closed loop system can
be transformed into LMI feasibility problem.
Therefore, using the same notation in section 3, the
design problem of the DFC can be equivalent to the
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following LMI feasibility problem.

LMI feasibility problem equivalent to DFC design
problem :

The problem of finding X>0 and 3, M, -
which satisfy the following equation.

" Mr

X  {AX-BM}
AX-BM, X

where X=P!, M= F.X, M,=F.X, -, and M,= F.X
The feedback gain matrices F,, F,, -*, F, and the

common positive definite matrix P can be given by the

LMI solutions, X and M, M, *+-, M, as follows.

Therefore, the control gain matrices Dy, ***, D,, E,
-+, E, of the proposed DFC can be obtained from the
feedback gain matrices Fy, [, -, F,.

5. Real-Time Backing up Control of a
Computer-Simulated Truck-Trailer

‘We have shown an analysis technique of the proposed
DFC under the condition that the computing time-delay
exists in section 4. Some papers have reported that
backing up control of a computer-simulated truck-trailer
could be realized by fuzzy control[9,11,15,16]}.
However, these studies have not analyzed the
computing time-delay effect on control system
performance in digital implementation of the fuzzy
controller. In this section, we consider the computing
time-delay in real-time digital fuzzy control systems and
apply the controller with unit time-delay to the real-time
backing up control of a truck-trailer system.

5.1 Models of a Truck-Trailer

M. Tokunaga derived the following model about the
truck-trailer system [16]. Fig. 4 shows the schematic
diagram of this system.

ul- ‘7

Fig. 4. Truck Trailer Model and Its Coordinate System
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Xolk+ 1) = x4(k) +vT/1 tanfu(k)]
x,(k) = xo(k) —x,(k)
x5(k+ 1) = x,(k) + vI/Lsin(x,(k)}
x5 (k+ 1)=x,(k) + vTcos[x, (k)1 sin[{x,(k + 1) +x,(k) }/2]
x(k+ 1)=x,(k) + vTcos [x; (k)] coS [{x;(k + 1) +x,(k) }/2]
17
where, x,(k): The angle of the truck referenced to the
desired trajectory
x,(k): The angle difference between the truck and the
trailer
x,(k): The angle of the trailer referenced to the desired
trajectory
x3(k): The vertical position of the trailer tail end
x4(k): The horizontal position of the trailer tail end
u(k). The steering angle of the truck

[: The length of the truck, L: The length of the trailer
T: Sampling time, v. The constant backward speed

K. Tanaka defined the state vector as x(k) = [x;(k)
(k) x(®)]T in the truck-trailer model (17) and
expressed the plant as two following fuzzy rules[9]. Fig.
5 shows the membership functions in the premise part
in the fuzzy system (18).

Rule 1: If x,(k) + VI/{2L}x, (k) is M,

THEN x(k+1) = A, x(k) + B u(k)

Rule 2: If x, (k) + VI/{2L }x, (k) is M,

18
THEN x(k+1) = A,x(k) + Byu(k) (18
[ vT ] [ vT W
1~ 7 00 1- 7 00
where, 4, = vr , Ay = vI ,
1 7 1 0[, 4, T 10
V272 dviT?
2L vTIJ 2z dle—
1.0
MZ Ml 1 Ml
n 0 7 (rad)
v
xz(k)+—2—1jx,(k)

Fig. 5. Membership functions
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B=B, =B,=

oo~|<

I=28[m], L =-1.0[m/s], v=—1.0[m/s], T=2.0[s],
d=10%xn

5.2 Discrete Time Fuzzy Controller without con-
sidering the computing time-delay

In this subsection, the backing up control of a truck-
trailer is simulated by the conventional discrete time
fuzzy controller based on the discrete TS fuzzy model
of the system. To solve the backward parking problem
of Eq. (18), the PDC fuzzy controller can be designed as
follows.

Rule 1: If x, (k) + VI/{2L} - x; (k) is M,
THEN u(k) = F{x(k)
Rule 2: If x, (k) + VI/{2L} - x, (k) is M,

(19)
THEN u(k) = Fix(k)
1.2837 0.9773
where F| = |_04139| and F, =|_0.0709| -
0.0201 0.0005

Ricatti equation for linear discrete systems was used
to determine these feedback gains. The detailed
derivation of these feedback gains was given in [9].

Substituting Eq. (19) into Eq. (I18) yields the
following closed loop system due to B=B,=B,.

x(k+1) = % h(k)Gx(k) 20)
i=1

0.448 0.296 -0.014

where, G\ =] 0364 | o| and
0364 -2 1
0.448 0296 -0.014
G,={ -0364 1 0

0.116x102-0.637x102 1

Since there exists a common positive definite matrix P
which satisfies the stability sufficient condition (3), the
closed loop system is asymptotically stable in the large.
That 1s, the backward parking can be accomplished for all
initial contitions.

Common positive definite matrix :

113.9-92.61 2.540
P =19261 110.7-3.038
2.540 -3.038 0.5503

Two initial conditions used for the simulations of the
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Table 1. The initial conditions of the truck-trailer system

CASE x(Ofdeg]  x(0)[deg]  x3(0)deg]
CASEI 0 0 20
CASET -90 135 -10

‘P‘o:wlo;_\

3 feo
°

S
 m}

(b)

Fig. 6. (a): Simulation result for CASE I, (b): Simulation
result for CASE II

truck-trailer system are given in Table 1.

Fig. 6(a) and (b) show the simulation results for
CASE I and CASE 1. As can be seen in these Figures,
the backing up control for each initial condition is
accomplished effectively.

5.3 Computing Time-Delay Effect in Real Time
Digital Fuzzy Control System

In many real-time implementations of the digital
controller, a vision sensor is generally needed to
measure the state x(k) of the truck-trailer system{17].
The computing time-delay can be made by the data
processing from a vision sensor. Also, it can be made by
the calculation of the fuzzy algorithm and by the actutor
in adjusting the steering angle. Let 7 be defined as the
sum of all this time-delay. Then the output of the
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designed fuzzy controller is delayed with computing
time-delay 7 when the fuzzy control algorithms are
implemented on real time digital computer. In this
practical case, the discrete time fuzzy controller in
section 5.2 cannot guarantee the stability of the system
due to the computing time-delay.

5.4 Proposed DFC applied to the Real-Time
Digital Fuzzy Control System considering Com-
puting Time-Delay

In this subsection, we design the real-ttme DFC
considering computing time-delay. Under the same
simulation condition, we apply the proposed DFC to the
system. Following the design technique of DFC in
section 4, we can construct the DFC for the backing up
control problem as follows.

Rule 1 If x,(k)+ vI/{2L} - x(k) is M,
THEN u(k+1) = Dyu(k) + E,;x(k)
Rule 2: If x, (k) + VI/{2L} - x (k) is M,

@n
THEN u(k+1) = D,u(k) + Eyx(k)

Combining Eq. (18) with Eq. (21), the augmented
closed loop system is given as follows,

wk+1) = 3 h(K)Gw(k) 22)
i=1

A, B Ay B
where, G, = ! 1,G2= 27
E| D, E,D,

To obtain the control gain matrices D, D,, E;, E,
guarantecing the stability of the closed loop system
(22), we solve the LMI feasibility problem eqmvalent
to DFC design problem as follows.

The problem of finding X>¢ and M,, M, which
satisfy the following inequalities :

X {4AX-BM}
AX-BM, X

>0

where A4, = [A!’Bi and B = H, i=1,2 23)
1

00

The matrices X and M, M, in LMIs are determined
using a convex optimization technique offered by [19].

157.0056 61.9680 —1.6565 220.727
61.9680 50.4822 69.8423 53.4329
~1.6565 69.8423 489.4416 -2.3866|°

220.7727 53.4329 -2.3866 442.6866
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M, = [_96.3672 ~43.1521 41.8056 ~5.8356);

M, = [[116.3143 ~66.0021 1.3065 —22.9842]

The feedback gains and a common positive definite
matrix, P are determined by the relationship (16) as
follows.

0.0995 -0.1036 0.0149 -0.0370
-0.1036 0.1373 -0.0198 0.0350

0.0149 ~0.0198 0.0049 —0.0050|
-0.0370 0.0350 -0.0050 0.0165

P=Xx1=

Fi=MX" =-[E, D = [-3.9047 2.6765 03020 1.5869]

F=MX" = -[E, D) = [-3.8624 2.1564 03102 1.6123
(24)

Therefore, the closed loop system is asymptotically
stable in the large considering computing time-delay
and the control gain matrices are given as follows by
PDC design problem equivalent to DFC design
problem.

L m»ua;#onmen’

(b)

Fig. 7. (a): Simulation result by DFC for CASE I, (b):
Simulation result by DFC for CASE II
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D, =-1.5869, D, =-1.6123,

E\ = [3.9047 —2.6765 0.3020]> E2=[3.8624 -2.1564 0.3102]

Fig. 7 (a) and (b) show the simulation results of the
designed real-time DFC. As can be seen in these figures,
the backward parking is accomplished successfully for
CASE I and CASE II. And the stability of the system
can be guaranteed in the presence of a computing time-
delay because the controller can be designed
syncronized with the sampling time.

6. Conclusions

In this paper, the effect of computing time-delay in
the implementation of the fuzzy control algorithm on a
digital computer was investigated and a real-time DFC
framework was developed to remedy the problems of
computing time-delay. Because the proposed controller
was syncronized with the sampling time delayed with
unit sampling period, the analysis and the design
problem considering computing time-delay could be
very easy. Convex optimization technique based on
LMI has been utilized to solve the problem of finding
stable feedback gains and a common positive definite
matrix P. Therefore, the stability of the real-time fuzzy
control system was guaranteed in the presence of the
computing time-delay. The analysis of the real-time
fuzzy controlled truck-trailer system has demonstrated
how a given system could be stabilized in the presence
of the computing time-delay using the proposed fuzzy
controller.
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