• 제목/요약/키워드: Computer-aided design/computer-aided manufacturing

검색결과 410건 처리시간 0.023초

Comparison of shear bond strengths of different types of denture teeth to different denture base resins

  • Prpic, Vladimir;Schauperl, Zdravko;Glavina, Domagoj;Catic, Amir;Cimic, Samir
    • The Journal of Advanced Prosthodontics
    • /
    • 제12권6호
    • /
    • pp.376-382
    • /
    • 2020
  • PURPOSE. To determine the shear bond strengths of different denture base resins to different types of prefabricated teeth (acrylic, nanohybrid composite, and cross-linked) and denture teeth produced by computer-aided design/computer-aided manufacturing (CAD/CAM) technology. MATERIALS AND METHODS. Prefabricated teeth and CAD/CAM (milled) denture teeth were divided into 10 groups and bonded to different denture base materials. Groups 1-3 comprised of different types of prefabricated teeth and cold-polymerized denture base resin; groups 4-6 comprised of different types of prefabricated teeth and heat-polymerized denture base resin; groups 7-9 comprised of different types of prefabricated teeth and CAD/CAM (milled) denture base resin; and group 10 comprised of milled denture teeth produced by CAD/CAM technology and CAD/CAM (milled) denture base resin. A universal testing machine was used to evaluate the shear bond strength for all specimens. One-way ANOVA and Tukey post-hoc test were used for analyzing the data (α=.05). RESULTS. The shear bond strengths of different groups ranged from 3.37 ± 2.14 MPa to 18.10 ± 2.68 MPa. Statistical analysis showed significant differences among the tested groups (P<.0001). Among different polymerization methods, the lowest values were determined in cold-polymerized resin.There was no significant difference between the shear bond strength values of heat-polymerized and CAD/CAM (milled) denture base resins. CONCLUSION. Different combinations of materials for removable denture base and denture teeth can affect their bond strength. Cold-polymerized resin should be avoided for attaching prefabricated teeth to a denture base. CAD/CAM (milled) and heat-polymerized denture base resins bonded to different types of prefabricated teeth show similar shear bond strength values.

A Study on the Evaluation of Repeated Measurement Stability of 3D Tooth Model Obtained by Several Dental Scanners (수종의 치과용 스캐너로 채득된 3차원 치아 모형의 반복측정 안정성 평가 연구)

  • Bae, Eun-Jeong;Kim, Won-Soo;Lim, Joong Yeon
    • The Journal of the Korea Contents Association
    • /
    • 제21권5호
    • /
    • pp.996-1003
    • /
    • 2021
  • The purpose of this study is to evaluate the reliability of repeated measurements of several dental scanners. Blue-lighted scanners, white-light scanners and optical-type scanners are used in the study of repeatability in this study. The measurement results were calculated as root mean square (RMS) and the significance level was confirmed by applying the 1-way ANOVA statistical technique (𝛼=.05). According to the statistical analysis, the scanner with the largest RMS value was Z-opt group (38.2 ㎛. Next, D-white was 35.2 ㎛ and the group with the lowest RMS value was I-blue (34.1 ㎛). The comparison of RMS means between each group was not significant (p>.05). From this result, the blue light had the lowest error in repeatability of dental scanners, but no statistical significance. The conclusion of this study is that the study results are clinically acceptable.

Full mouth rehabilitation of a worn dentition using digital guided tooth preparation: a case report (과도한 구치부 마모를 보이는 환자에서 digital guided tooth preparation을 이용한 완전 구강 회복 증례)

  • Kim, Yong-Kyu;Yeo, In-Sung Luke;Yoon, Hyung-In;Lee, Jae-Hyun;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • 제60권1호
    • /
    • pp.80-90
    • /
    • 2022
  • With the development of digital dentistry, it is being applied in various ways of dental treatment. This case report presents the definitive prosthesis designed in advance with a re-established vertical dimension and the digital technology, which determined the amount of tooth preparation, in order to preserve as much tooth structure as possible in a patient with pathological wear of the posterior teeth and loss of vertical dimension. For accurate tooth preparation, the guides of the occlusal and axial surfaces were digitally and additively manufactured. Then, aesthetics and anterior guidance were established at the provisional stage. The information of the provisional restoration was delivered to the definitive stage by double scanning. The digital technology, including the virtual planning and the guided tooth removal, produced the definitive restorations satisfactory to both the patient and clinician.

Comparative evaluation of shear bond strength of orthodontic brackets bonded to three-dimensionally-printed and milled materials after surface treatment and artificial aging

  • Ameer Biadsee;Ofir Rosner;Carol Khalil;Vanina Atanasova;Joel Blushtein;Shifra Levartovsky
    • The korean journal of orthodontics
    • /
    • 제53권1호
    • /
    • pp.45-53
    • /
    • 2023
  • Objective: This study aimed to evaluate the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensionally (3D)-printed materials after various surface treatments and artificial aging compared with that bonded to computer-aided design/computer-aided manufacturing (CAD-CAM) polymethyl methacrylate (PMMA)-milled materials. Methods: Eighty cylindrical specimens were 3D printed and divided into the following four subgroups (n = 20 each) according to the surface treatment and artificial aging procedure. Group A, sandblasted with 50 ㎛ aluminum oxide particles (SA) and aging; group B, sandblasted with 30 ㎛ silica-coated alumina particles (CO) and aging; group C, SA without aging; and group D, CO without aging. For the control group, 20 CAD-CAM PMMA-milled cylindrical specimens were sandblasted with SA and aged. The SBS was measured using a universal testing machine (0.25 mm/min), examined at ×2.5 magnification for failure mode classification, and statistically analyzed (p = 0.05). Results: The retention obtained with the 3D-printed materials (groups A-D) was higher than that obtained with the PMMA-milled materials (control group). However, no significant difference was found between the study and control groups, except for group C (SA without aging), which showed significantly higher retention than the control group (PMMA-SA and thermocycling) (p = 0.037). Study groups A-D predominantly exhibited a cohesive specimen mode, indicating specimen fracture. Conclusions: Orthodontic brackets bonded to 3D-printed materials exhibit acceptable bonding strengths. However, 3D-printed materials are prone to cohesive failure, which may result in crown fractures.

Transformation of digital dentistry and the need of introducing education in dental hygiene (디지털 덴티스트리의 전환과 치위생교육 도입의 필요성)

  • Hye-Bin Go;Young-Joo Seo;Bok-Yeon Won;Sang-Hwan Oh
    • Journal of Korean society of Dental Hygiene
    • /
    • 제22권6호
    • /
    • pp.467-475
    • /
    • 2022
  • Objectives: This study aimed to understand the definitions, types, and principles of computer-aided design/computer-aided manufacturing (CAD/CAM) and scanners due to the introduction of digital workflows. Methods: This study was based on information from the government's law and articles published in academic journals. Results: CAD/CAM is a technology that measures the shape three-dimensionally, saves it as data, designs it into the desired shape, and processes the product. Scanners, which are classified as intraoral and extraoral scanners, measure teeth and the intraoral environment three-dimensionally and convert them into three-dimensional (3D). A 3D printer is a machine that creates a 3D object by layering materials based on a 3D drawing. It can be classified into four types according to the method: extrusion, powder bonding, lamination, and photopolymerization methods. The most used 3D printer methods in dentistry are stereolithograhpy and digital light processing, and they are widely used in prosthetic, surgical, and orthodontic fields. Conclusions: As the dental system is digitized, it is expected that the government will classify the dental hygienist scope of work and the universities will reflect the curriculum; it is necessary to develop excellent dental hygienists, diversify the educational pathways, and establish policies to meet the needs of the increasing number of patients.

Survey research to implement a job-based national practical exam for dental technicians (치과기공사의 직무기반 국가 실기시험 실행을 위한 조사 연구)

  • Jae-Hong Kim;Ki-Baek Kim
    • Journal of Technologic Dentistry
    • /
    • 제45권4호
    • /
    • pp.118-123
    • /
    • 2023
  • Purpose: This study proposes measures needed to implement a job-based national practical exam for dental technicians. Methods: For this study, a survey was conducted targeting 244 currently employed individuals. The current national practical test for dental technicians was divided into directions for the job-based practical test, subjects that need improvement among the current practical test subjects, items that need to be reflected in the practical test evaluation for each subject, and subjects that need to be added to the practical test. It comprised ten questions (Cronbach's α=0.801). Results: The following results were obtained. Satisfaction with the current practical test was lower than average. Future improvement should focus on job-based evaluation. The dental ceramic lab technology subject needs to be reorganized urgently, and the tasks that require evaluation for each subject are different. Moreover, if evaluation subjects are added in the future, the introduction of assessment for dental CAD/CAM (computer-aided design/computer-aided manufacturing) subjects was found to be the most urgent. Conclusion: In this study, the most necessary tasks of the current national practical examination for dental technicians were evaluated and the content needed for future reorganization was investigated. Future tests should be expanded to evaluate critical job areas. Furthermore, it is necessary to open new courses in fields such as CAD/CAM, as they are in high demand in the workplace.

A Study on the Implementation of an Agile SFFS Based on 5DOF Manipulator (5축 매니퓰레이터를 이용한 쾌속 임의형상제작시스템의 구현에 관한 연구)

  • Kim Seung-Woo;Jung Yong-Rae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • 제42권1호
    • /
    • pp.1-11
    • /
    • 2005
  • Several Solid Freeform Fabrication Systems(SFFS) are commercialized in a few companies for rapid prototyping. However, they have many technical problems including the limitation of applicable materials. A new method of agile prototyping is required for the recent manufacturing environments of multi-item and small quantity production. The objectives of this paper include the development of a novel method of SFFS, the CAFL/sup VM/(Computer Aided Fabrication of Lamination for Various Material), and the manufacture of the various material samples for the certification of the proposed system and the creation of new application areas. For these objectives, the technologies for a highly accurate robot path control, the optimization of support structure, CAD modeling, adaptive slicing was implemented. However, there is an important problem with the conventional 2D lamination method. That is the inaccuracy of 3D model surface, which is caused by the stair-type surface generated in virtue of vertical 2D cutting. In this paper, We design the new control algorithm that guarantees the constant speed, precise positioning and tangential cutting on the 5DOF SFFS. We develop the tangential cutting algorithm to be controlled with constant speed and successfully implemented in the 5DOF CAFL/sup VM/ system developed in this paper. Finally, this paper confirms its high-performance through the experimental results from the application into CAFL/sup VM/ system.

A Shape-preserved Method to Improve the Developability of Mesh

  • Su, Zhixun;Liu, Xiuping;Zhou, Xiaojie;Shen, Aihong
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 한국정보기술응용학회 2005년도 6th 2005 International Conference on Computers, Communications and System
    • /
    • pp.219-224
    • /
    • 2005
  • Developable surface plays an important role in computer aided design and manufacturing systems. This paper is concerned with improving the develop ability of mesh. Since subdivision is an efficient way to design complicated surface, we intend to improve the developability of the mesh obtained from Loop subdivision. The problem is formulated as a constrained optimization problem. The optimization is performed on the coordinates of the points of the mesh, together with the constraints of minimizing shape difference and maximizing developability, a developability improved mesh is obtained.

  • PDF

Manufacturing of Packing Materials for 3D Printing and Evaluation of their Performances (3D 프린팅에 의한 충진물 제조 및 성능평가)

  • Lee, Hwa Young;Choi, Young Min;Hong, Yeon Ki
    • Journal of Institute of Convergence Technology
    • /
    • 제5권2호
    • /
    • pp.33-36
    • /
    • 2015
  • In this paper, the development history of random packings for several generations was briefly introduced. We demonstrate the application of 3D printing to the fabrication of Pall rings, directly using computer aided design (CAD) models. The CAD was used to design Pall rings with different number of blades. The models were then printed by using UV curing of acrylonitrile-butadiene-styrene (ABS) resins. The results show that 3D printing is a promising method for producing precisely controlled packing materials. It is also expected that 3D printing is helpful for the fundamental studies of highly efficient packing materials with complex geometrical shapes.

Impact Damage on Brittle Materials with Small Spheres (I)

  • Woo, Su-Chang;Kim, Moon-Saeng;Shin, Hyung-Seop;Lee, Hyeon-Chul
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제4권1호
    • /
    • pp.30-36
    • /
    • 2003
  • Brittle materials such as glasses and ceramics, which are very weak under impact loading, show fragile failure mode due to their low fracture toughness and crack sensitivity. When brittle materials are subjected to impact by small spheres, high contact pressure occurs at the impacted surface causing local damage on the specimen. This damage is a dangerous factor in causing the final fracture of structures. In this research, the crack propagation process of soda-lime glass by the impact of small spheres is explained and the effects of several constraint conditions for impact damage were studied by using soda-lime glass; that is, the effects for the materials and sizes of impact ball, thickness of specimen and residual strength were evaluated. Especially, this research has focused on the damage behavior of ring cracks, cone cracks and several other kinds of cracks.