Journal of the Korea Institute of Information and Communication Engineering
/
v.27
no.1
/
pp.27-33
/
2023
Demands for eco-friendly food materials are increasing rapidly because of increased interest in well-being and health care, deterioration of air quality due to fine dust, and various soil and water pollution. Aquaponics is a system that can solve various problems such as economic activities, environmental problems, and safe food provision of the elderly population. However, techniques for deriving the optimal growth environment should be preceded. In this paper, we intend to design an intelligent plant growth measurement system that considers the characteristics of existing aquaponics. In particular, we would like to propose a module configuration plan for learning data and judgment systems when providing a uniform growth environment, focusing on designing systems suitable for production sites that do not have high-performance processing resources among intelligent aquaponics production management modules. It is believed that the proposed system can effectively perform deep learning with small analysis resources.
KIPS Transactions on Computer and Communication Systems
/
v.12
no.2
/
pp.61-68
/
2023
Demand for "pet plants" and "planteriers" is increasing due to the increase in COVID-19 and fine dust. In this paper, Smart pots for planterior should be small in size while providing the functions for cultivation without any problems. They should provide a user interface for long-range control for user's convenience. We implemented smart pots by incorporating IoT into pots. In response to the growing number of iPhone users, we developed an iOS app for user interface and UX/UI design. By communicating with the smartphone app and a home pot server over the Internet, users can check and control the state of the pot anytime, anywhere. The server and the pot module were separated to reduce the size of the pot itself. By locating a water bottle at the bottom of the pot, we expect that it is suitable for a "planterier" because it adopts a circulating structure in which drainage flows down to the water bottle as it is.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.3
/
pp.473-482
/
2022
Wearing a mask is also necessary to limit the risk of infection in today's era of COVID-19 and wearing a helmet is inevitable for the safety of personnel who works in a dangerous working environment such as construction sites. This paper proposes an effective deep learning model, HelmetMask-Net, to classify both Helmet and Mask. The proposed HelmetMask-Net is based on CNN which consists of data processing, convolution layers, max pooling layers and fully connected layers with four output classifications, and 4 classes for Helmet, Mask, Helmet & Mask, and no Helmet & no Mask are classified. The proposed HelmatMask-Net has been chosen with 2 convolutional layers and AdaGrad optimizer by various simulations for accuracy, optimizer and the number of hyperparameters. Simulation results show the accuracy of 99% and the best performance compared to other models. The results of this paper would enhance the safety of personnel in this era of COVID-19.
Kim, Taeho;Han, Hyun Jin;Lee, Byeong-Ho;Shin, Young-Tae
KIPS Transactions on Computer and Communication Systems
/
v.11
no.2
/
pp.59-66
/
2022
The Joint Coastal Guard System is composed of a maritime surveillance system and a anti-coastal infiltration system, and is a system in which the Navy is mainly responsible for the maritime and the Army is responsible for the coast. We analyzed the operations effectiveness of the joint coastal guard system, in which various weapon systems of the army and navy are operated in a complex way, to the extent to which successful operation is possible against small targets. The operations effectiveness analysis was conducted by defining the operations effectiveness by operation type, configuring the simulation environment using METT-T elements, establishing the assumptions of the simulation scenario, conducting the simulation and analyzing the simulation results by weather condition. The simulation tools used were NORAM and EADSIM. As a result of the operations effectiveness analysis, the joint coastal guard system currently in operation showed a significant difference in operational success depending on the size of the target and weather conditions. This research can be used as useful data for establishing an effective joint coastal guard system and conducting systematic guard operations.
The Journal of the Convergence on Culture Technology
/
v.8
no.6
/
pp.487-492
/
2022
Universities are looking for various methods to enhance educational competence level suitable for the rapidly changing social environment. This study suggests a method to promote academic and educational achievements by reducing drop-out rate from their majors through implementation of pre-survey of satisfaction that revised and complemented survey items. To supplement the CQI method implemented after a general satisfaction survey, a pre-survey of satisfaction was carried out. To consolidate students' competences, this study made prediction and analysis of data with more importance possible using the Random Forest of the machine learning technique that can be applied to AI Medici platform, whose design is underway. By pre-processing the pre-survey of satisfaction, the students information enrolled in classes were defined as an explanatory variable, and they were classified, and a model was created and learning was conducted. For the experimental environment, the algorithms and sklearn library related in Jupyter notebook 3.7.7, Python 3.7 were used together. This study carried out a comparative analysis of change in educational satisfaction survey, carried out after classes, and trends in the drop-out students by reflecting the results of the suggested method in the classes.
Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.
Jin Yong Lee;Byoung Hoon Choi;Namhyun Koh;Samhyun Chun
KIPS Transactions on Computer and Communication Systems
/
v.12
no.6
/
pp.189-196
/
2023
Today, in the era of the 4th industrial revolution based on the paradigm of hyper-connectivity, super-intelligence, and superconvergence, the remote work environment is becoming central based on technologies such as mobile, cloud, and big data. This remote work environment has been accelerated by the demand for non-face-to-face due to COVID-19. Since the remote work environment can perform various tasks by accessing services and resources anytime and anywhere, it has increased work efficiency, but has caused a problem of incapacitating the traditional boundary-based network security model by making the internal and external boundaries ambiguous. In this paper, we propse a method to improve the limitations of the traditional boundary-oriented security strategy by building a security model centered on core components and their relationships based on the zero trust idea that all actions that occur in the network beyond the concept of the boundary are not trusted.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.2
/
pp.331-339
/
2017
This paper proposes a thread pool management technique of an websocket server that is applicable to embedded systems. WebSocket is a proposed technique for consisting a dynamic web, and is constructed using HTML5 and jQuery. Various studies have been progressing to construct a dynamic web by Apache, Oracle and etc. Previous web service systems require high-capacity, high-performance hardware specifications and are not suitable for embedded systems. The node.js which is consist of HTML5 and jQuery is a typical websocket server which is made by open sources, and is a java script based web application which is composed of a single thread. The node.js has a limitation on the performance for processing a high velocity data on the embedded system. We make up a multi-thread based websoket server which can solve the mentioned problem. The thread pool is managed by a bit register and suitable for embedded systems. To evaluate the performance of the proposed algorithm, we uses JMeter that is a network test tool.
Purpose: The aim of this study was to evaluate changes in the trabecular bone through texture analysis and compare the texture analysis characteristics of different areas in patients with medication-related osteonecrosis of the jaw (MRONJ). Materials and Methods: Cone-beam computed tomographic images of 16 patients diagnosed with MRONJ were used. In sagittal images, 3 regions were chosen: active osteonecrosis(AO); intermediate tissue (IT), which presented a zone of apparently healthy tissue adjacent to the AO area; and healthy bone tissue (HT) (control area). Texture analysis was performed evaluating 7 parameters: secondary angular momentum, contrast, correlation, sum of squares, inverse moment of difference, sum of entropies, and entropy. Data were analyzed using the Kruskal-Wallis test with a significance level of 5%. Results: Comparing the areas of AO, IT, and HT, significant differences (P<0.05) were observed. The IT and AO area images showed higher values for parameters such as contrast, entropy, and secondary angular momentum than the HT area, indicating greater disorder in these tissues. Conclusion: Through texture analysis, changes in the bone pattern could be observed in areas of osteonecrosis. The texture analysis demonstrated that areas visually identified and classified as IT still had necrotic tissue, thereby increasing the accuracy of delimiting the real extension of MRONJ.
The Journal of the Convergence on Culture Technology
/
v.9
no.3
/
pp.835-843
/
2023
Given the structure of XML data, path and tree pattern matching algorithms play an important role in XML query processing. To facilitate decisions or relationships between nodes, nodes in an XML tree are typically labeled in a way that can quickly establish an ancestor-descendant on relationship between two nodes. However, these techniques have the disadvantage of re-labeling existing nodes or recalculating certain values if insertion occurs due to sequential updates. Therefore, in current labeling techniques, the cost of updating labels is very high. In this paper, we propose a new labeling technique called Fast XML encoding, which supports the update of order-sensitive XML documents without re-labeling or recalculation. It also controls the length of the label by reusing deleted labels at the same location in the XML tree. The proposed reuse algorithm can reduce the length of the label when all deleted labels are inserted in the same location. The proposed technique in the experimental results can efficiently handle order-sensitive queries and updates.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.