• 제목/요약/키워드: Compression Behavior

검색결과 1,551건 처리시간 0.022초

Ti-6Al-4V합금의 비틀림 및 압축변형에 따른 고온변형거동 고찰 (Investigation of High Temperature Deformation Behavior in Compression and Torsion of Ti-6Al-4V Alloy)

  • 염종택;정은정;김정한;홍재근;박노광;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.435-438
    • /
    • 2008
  • High temperature deformation of Ti-6Al-4V alloy with a lamellar colony microstructure was investigated by hot compression and torsion tests. The torsion and compression tests were carried out under a wide range of temperatures and strain rates with true strain up to 2 and 0.7, respectively. The processing maps were generated on the basis of compression and torsion test data and using the principles of dynamic materials modeling (DMM). The shapes of the strain-stress curves in alpha-beta region and processing maps obtained on the two different tests have been compared with a view to evaluate the effect of the microstructure evolution on the flow softening behavior of Ti-6Al-4V alloy with a lamellar colony microstructure.

  • PDF

Influence of pre-compression on crack propagation in steel fiber reinforced concrete

  • Abubakar, Abdulhameed U.;Akcaoglu, Tulin
    • Advances in concrete construction
    • /
    • 제11권3호
    • /
    • pp.261-270
    • /
    • 2021
  • In this study, a new understanding is presented on the microcracking behavior of high strength concrete (HSC) with steel fiber addition having prior compressive loading history. Microcracking behavior at critical stress (σcr) region, using seven fiber addition volume of 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0% was evaluated, at two aspect ratios (60 and 75). The specimens were loaded up to a specified compressive stress levels (0.70fc-0.96fc), and subsequently subjected to split tensile tests. This was followed by microscopic analyses afterwards. Four compressive stress levels as percentage of fc were selected according to the linearity end point based on stress-time (σ-t) diagram under uniaxial compression. It was seen that pre-compression has an effect on the linearity end point as well as fiber addition where it lies within 85-91% of fc. Tensile strength gain was observed in some cases with respect to the 'maiden' tensile strength as oppose to tensile strength loss due to the fiber addition with teething effect. Aggregate cracking was the dominant failure mode instead of bond cracks due to improved matrix quality. The presence of the steel fiber improved the extensive failure pattern of cracks where it changes from 'macrocracks' to a branched network of microcracks especially at higher fiber dosages. The applied pre-compression resulted in hardening effect, but the cracking process is similar to that in concrete without fiber addition.

Laboratory investigation of unconfined compression behavior of ice and frozen soil mixtures

  • Jin, Hyunwoo;Lee, Jangguen;Zhuang, Li;Ryu, Byung Hyun
    • Geomechanics and Engineering
    • /
    • 제22권3호
    • /
    • pp.219-226
    • /
    • 2020
  • Unconfined compression test (UCT) is widely conducted in laboratories to evaluate the mechanical behavior of frozen soils. However, its results are sensitive to the initial conditions of sample creation by freezing as well as the end-surface conditions during loading of the specimen into the apparatus for testing. This work compared ice samples prepared by three-dimensional and one-dimensional freezing. The latter created more-homogenous ice samples containing fewer entrapped air bubbles or air nuclei, leading to relatively stable UCT results. Three end-surface conditions were compared for UCT on ice specimens made by one-dimensional freezing. Steel disc cap with embedded rubber was found most appropriate for UCT. Three frozen materials (ice, frozen sand, and frozen silt) showed different failure patterns, which were classified as brittle failure and ductile failure. Ice and frozen sand showed strain-softening, while frozen silt showed strain-hardening. Subsequent investigation considered the influence of fines content on the unconfined compression behavior of frozen soil mixtures with fines contents of 0-100%. The mixtures showed a brittle-to-ductile transition of failure patterns at 10%-20% fines content.

입자결합모델을 이용한 횡방향 변형률 제어 하에서의 암석의 일축 및 삼축압축시험의 수치적 모사 (Numerical Simulation of Radial Strain Controlled Uniaxial and Triaxial Compression Test of Rock Using Bonded Particle Model)

  • 이창수;권상기;전석원
    • 터널과지하공간
    • /
    • 제21권3호
    • /
    • pp.216-224
    • /
    • 2011
  • 본 연구에서는 Class II 거동에 대해 입자결합모델을 이용하여 수치해석적인 방법으로 살펴보았으며, 횡방향 변형률 제어 압축시험을 수치해석적으로 모사할 수 있는 방법을 제시하였다. 수치해석에서 사용된 미시변수는 스웨덴 Aspo Hard Rock Laboratory에서 수행한 일축압축시험을 이용하여 결정하였다. 제시된 수치해석 기법을 이용해 Aspo 암석의 Class II 거동을 효과적으로 모사할 수 있었으며, 수치해석의 결과는 실험실 시험 결과와 잘 일치하였다.

Compression Properties of Weft Knitted Fabrics Consisting of Shrinkable and Non-Shrinkable Acrylic Fibers

  • Bakhtiari M.;Najar S. Shaikhzadeh;Etrati S. M.;Toosi Z. Khorram
    • Fibers and Polymers
    • /
    • 제7권3호
    • /
    • pp.295-304
    • /
    • 2006
  • High-bulk worsted yams with different shrinkable and non-shrinkable acrylic fibers blend ratios are produced and then single jersey weft knitted fabrics with three different structures and loop lengths are constructed. The physical properties of produced yams and compression properties of produced fabrics at eight pressure values (50, 100, 200, 500, 1000, 1500 and $2000 g/cm^2$) were measured using a conventional fabric thickness tester. Then, weft-knitted fabric compression behavior was analyzed using a two parameters model. It is found that at 40 % shrinkable fibre blending ratio the maximum yam bulk, shrinkage, abrasion resistance and minimum yarn strength are obtained. It is also shown that high-bulk acrylic yarn has the highest elongation at 20 % shrinkable fibre blend ratio. The statistical regression analysis revealed that the compression behavior of acrylic weft-knitted fabrics is highly closed to two parameter model proposed for woven fabrics. It is also shown that for weft-knitted structure, there is an incompressible layer (V') which resists against high compression load. Acrylic weft-knitted fabrics with knit-tuck structure exhibit higher compression rigidity and lower softness than the plain and knit-miss structures. In addition, at 20 % shrinkable fibre blend ratio, the high-bulk acrylic weft-knitted fabrics are highly compressible.

압축링-유막간의 접촉압력 거동에 관한 유한요소해석 (Finite Element Analysis of Contact Pressure Behavior in Compression Ring-Oil Film)

  • 김청균;김한구;한동철
    • Tribology and Lubricants
    • /
    • 제11권4호
    • /
    • pp.53-57
    • /
    • 1995
  • The contact pressure behavior is examined by means of a finite element analysis. The oil film between the piston ring and cylinder liner is analyzed on the basis that it behaves like a polymer material. The calculated results indicate that a shape of sloping edge with a straight line, which is designated as a Model III, shows a good performance on the contact pressure behavior for the increased speed. Obviously, the ring face profiles play an important role on the contact pressure between compression ring and oil film.

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Yield and Compression Behavior of Semi-Solid Material by Upper-Bound Method

  • Park, Joon-Hong;Kim, Chul;Kim, Byung-Min;Park, Jae-Chan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제2권4호
    • /
    • pp.23-29
    • /
    • 2001
  • The compression behavior of semi-solid materials is studied from a viewpoint of yield criteria and analysis methods. To describe the behavior of materials in semi-solid state, several theories have been proposed by extending the concept of plasticity of porous compressible materials. In the present work, the upper-bound method and the finite element method are used to model the simple compression process using yield criteria of Kuhn and Doraivelu. Segregation between solid and liquid which cause defect of product is analysed for Sn-15%Pb and A356 alloys during deformation in semi-solid state. The comparison of analyses is made according to yield criteria and analysis methods. In addition, the analysis result for semi-solid dendritic Sn-15%Pb alloy is compared with the experimental result of Charreyron et al..

  • PDF

냉간 압축 하에서 금속 분말의 치밀화 거동 (Densification Behavior of Metal Powder under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.652-657
    • /
    • 2001
  • Densification behavior of aluminum alloy(A16061) powder was investigated under cold compaction. Experimental data were obtained under triaxial compression with various loading conditions. A special form of the Cap model was proposed from experimental data of A16061 powder under triaxial compression. The proposed yield function and several yield functions in the literature were implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of A16061 powder under cold isostatic pressing and die compaction. The agreement between finite element calculations from the proposed yield function and experimental data is very good under cold isostatic pressing and die compaction.

  • PDF