• 제목/요약/키워드: Compressible Navier-Stokes Equation

검색결과 99건 처리시간 0.019초

압축성 Navier-Stokes 방정식 해를 위한 고차 정확도 내재적 불연속 갤러킨 기법의 개발 (DEVELOPMENT OF A HIGH-ORDER IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR SOLVING COMPRESSIBLE NAVIER-STOKES EQUATIONS)

  • 최재훈;이희동;권오준
    • 한국전산유체공학회지
    • /
    • 제16권4호
    • /
    • pp.72-83
    • /
    • 2011
  • A high-order discontinuous Galerkin method for the two-dimensional compressible Navier-Stokes equations was developed on unstructured triangular meshes. For this purpose, the BR2 methd(the second Bassi and Rebay discretization) was adopted for space discretization and an implicit Euler backward method was used for time integration. Numerical tests were conducted to estimate the convergence order of the numerical solutions of the Poiseuille flow for which analytic solutions are available for comparison. Also, the flows around a flat plate, a 2-D circular cylinder, and an NACA0012 airfoil were numerically simulated. The numerical results showed that the present implicit discontinuous Galerkin method is an efficient method to obtain very accurate numerical solutions of the compressible Navier-Stokes equations on unstructured meshes.

2차원 압축성 Navier-Stokes 방정식에 의한 터빈 익렬유동장의 수치 시뮬레이션 (Numerical Simulation of Turbine Cascade Flowfields Using Two Dimensional Compressible Navier-Stokes Equations)

  • 정희택;김주섭;신필용;최범석
    • 동력기계공학회지
    • /
    • 제3권4호
    • /
    • pp.16-21
    • /
    • 1999
  • Numerical simulation on two-dimensional turbine cascade flow has been performed using compressible Navier-Stokes equations. The flow equations are written in a cartesian coordinate system, then mapped into a generalized body-fitted ones. All direction of viscous terms are incoporated and turbulent effects are modeled using the extended ${\kappa}-{\epsilon}$ model. Equations are discretized using control volume SIMPLE algorithm on the nonstaggered grid sysetem. Applications are made at a VKI turbine cascade flow in atransonic wind-tunnel and compared to experimental data. Present numerical results are shown to be in good agreement with the experimental results and simulate the compressible viscous flow characteristics inside the turbine blade passage.

  • PDF

A STABILITY RESULT FOR THE COMPRESSIBLE STOKES EQUATIONS USING DISCONTINUOUS PRESSURE

  • Kweon, Jae-Ryong
    • 대한수학회지
    • /
    • 제36권1호
    • /
    • pp.159-171
    • /
    • 1999
  • We formulate and study a finite element method for a linearized steady state, compressible, viscous Navier-Stokes equations in 2D, based on the discontinuous Galerkin method. Dislike the standard discontinuous galerkin method, we do not assume that the triangle sides be bounded away from the characteristic direction. the unique stability follows from the inf-sup condition established on the finite dimensional spaces for the (incompressible) Stokes problem. An error analysis having a jump discontinuity for pressure is shown.

  • PDF

Slip flow 영역에서 Navier Stokes 방정식의 해석 연구 (Solutions of the Navier-Stokes equation in slip flow region)

  • 박원희;김태국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.597-602
    • /
    • 2000
  • In a MEMS(micro-electro mechanical system), the fluid may slip near the surface of a solid and have a discontinuous temperature profile. A numerical prediction in this slip flow region can provide a reasonable guide for the design and fabrication of micro devices. The compressible Navier-Stokes equation with Maxwell/smoluchowski boundary condition is solved for two simple systems; couette flow and pressure driven flow in a long channel. We found that the couette flow could be regarded as an incompressible system in low speed regions. For the pressure driven flow system, we observed nonlinear distribution of pressure in the long channel and numerical results showed a good agreement with the experimental results.

  • PDF

예조건화 압축성 알고리즘에 의한 저마하수 유동장 해석기법 (Preconditioned Compressible Navier- Stokes Algorithm for Low Mach Number Flows)

  • 고현;윤웅섭
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1998년도 춘계 학술대회논문집
    • /
    • pp.35-42
    • /
    • 1998
  • Time marching algorithms applied to compressible Navier-Stokes equation have a convergence problem at low Mach number. It is mainly due to the eigenvalue stiffness and pressure singularity as Mach number approaches to zero. Among the several methods to overcome the shortcomings of time marching scheme, time derivative preconditioning method have been used successfully. In this numerical analysis, we adopted a preconditioner of K.H. Chen and developed a two-dimensional, axisymmetric Navier-Stokes program. The steady state driven cavity flow and backward facing step flow problems were computed to confirm the accuracy and the robustness of preconditioned algorithm for low Mach number flows. And the transonic and supersonic flows insice the JPL axisymmetric nozzle internal flow is exampled to investigate the effects of preconditioning at high Mach number flow regime. Test results showed excellent agreement with the experimental data.

  • PDF

압축성 유동 해석 프로그램 개발을 통한 Eckardt 임펠러의 성능 예측 (Performance Prediction of Eckardt's Impeller based on The Development of compressible Navier-Stokes Solver)

  • 곽승철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.223-232
    • /
    • 1998
  • To investigate the flow inside the centrifugal impeller, computer program which can solve Three-dimensional compressible turbulent flow has been developed. The Navier-Stokes equations were chosen as the governing equation for viscous flow while Euler equations for inviscid case. Time marching method was incorporated with the Flux Difference Splitting method suggested by Roe to capture the steep gradients such as a shock. For high order of accuracy, MUSCL approach was adopted while differentiable limiter to ensure TVD property. For turbulence closure, Baldwin- Lomax model was applied due to its simplicity. To demonstrate the capabilities of present program, several validation problems have been solved and compared with experiments and other available data. From the above calculations generally good agreements were obtained. Finally, the developed code was applied to Eckardt's impeller and the performance prediction was carried out. Some important aspects on boundary condition for successful simulation were discussed and the remedy was also introduced.

  • PDF

터널에 진입하는 고속전철에 의한 3차원 점성유동과 압축파 특성에 관한 수치해석적 연구 (Numerical study of Three-Dimensional Characteristics of Flow Field and Compression Wave Induced by High Speed Train Entering into a Tunnel)

  • 신창훈;박원규
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.91-98
    • /
    • 2000
  • The three-dimensional unsteady compressible Full Navier-Stokes equation solver with sliding multi-block method has been applied to analyze three dimensional characteristics of the flow field and compression wave around the high speed train which Is entering into a tunnel. The numerical scheme of AF + ADI was used to efficiently solve Navier-Stokes equations in the curvilinear coordinate system. The vortex formation around the nose region was found and the generation of compression wave due to the blockage effects was observed ahead of the train in the form of plane wave. The three dimensional characteristics of the flow field compared to the analytic results were discussed in detail. The variation of pressure of tunnel wall surface and velocity profile of the train are identified as the train enters into a tunnel. The changes in aerodynamic forces and streamlines of each specific sections are also discussed and presented.

  • PDF

Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법 (A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range)

  • 심은보;장근식
    • 한국전산유체공학회지
    • /
    • 제1권1호
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

Kinetic BGK 기법을 이용한 Navier-Stokes 유동 해석자의 천이 영역 적용성 연구 (A FEASIBILITY STUDY OF A NAVIER-STOKES FLOW SOLVER USING A KINETIC BGK SCHEME IN TRANSITIONAL REGIME)

  • 조민우;양태호;권오준
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.54-61
    • /
    • 2015
  • In the present study, a flow solver using a kinetic BGK scheme was developed for the compressible Navier-Stokes equation. The kinetic BGK scheme was used to simulate flow field from the continuum up to the transitional regime, because the kinetic BGK scheme can take into account the statistical properties of the gas particles in a non-equilibrium state. Various numerical simulations were conducted by the present flow solver. The laminar flow around flat plate and the hypersonic flow around hollow cylinder of flare shape in the continuum regime were numerically simulated. The numerical results showed that the flow solver using the kinetic BGK scheme can obtain accurate and robust numerical solutions. Also, the present flow solver was applied to the hypersonic flow problems around circular cylinder in the transitional regime and the results were validated against available numerical results of other researchers. It was found that the kinetic BGK scheme can similarly predict a tendency of the flow variables in the transitional regime.

2차원 Navier-Stokes식을 이용한 회전 진동하는 원형실린더 주위 유동해석 (ANALYSIS OF ROTARY OSCILLATION CIRCULAR CYLINDER USING UNSTEADY TWO DIMENSIONAL NAVIER-STOKES EQUATIONS)

  • 이명국;김재수
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2009년 추계학술대회논문집
    • /
    • pp.27-33
    • /
    • 2009
  • In this paper, the flow past a rotary oscillating circular cylinder is simulated. The high-order and high-resolution numerical schemes with the characteristic boundary conditions are used for the compressible Navier-Stokes equation. The frequencies of rotating oscillation are $0.19\;{\leq}\;S_f\;{\leq}\;0.25$ for the maximum angular $\theta_{max}=10^{\circ}$ and $17^{\circ}$. The flow conditions are Mach number of 0.3 and Reynolds number of 1000. At Lock-on and Non-lock-on region which are defined by the relation between the vortex shedding frequency and the oscillating frequency, the drag and lift coefficient are analyzed.

  • PDF