• Title/Summary/Keyword: Composted animal manure

Search Result 37, Processing Time 0.027 seconds

Effect of Application Rate of Composted Animal Manure on Nitrous Oxide Emission from Upland Soil Supporting for Sweet potato (고구마 재배 밭토양에서 가축분퇴비의 시용량이 아산화질소 발생에 미치는 영향)

  • Kim, Sung Un;Ruangcharus, Chuanpit;Lee, Hyun Ho;Park, Hye Jin;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.3
    • /
    • pp.172-178
    • /
    • 2018
  • BACKGROUND: Composted animal manure applied to the arable soil for improving soil quality and enhancing crop productivity causes greenhouse gas emissions such as nitrous oxide ($N_2O$) by processes of nitrification and denitrification. However, little studies have been conducted on determining effect of application ratio of composted animal manure on $N_2O$ emission rate and its annual emission pattern from upland soil in South Korea. Therefore, this study was conducted to determine $N_2O$ emission rate and its annual emission pattern from upland soil supporting for sweet potato. METHODS AND RESULTS: Composted animal manure was applied at the ratio of 0, 10, and 20 Mg/ha to an upland soil supporting for sweet potato (Ipomoea batatas). Nitrous oxide emission was examined during growing season and non-growing season from May 2016 through May 2017. Daily $N_2O$ fluxes showed peaks right after applications of composted animal manure and inorganic nitrogen fertilizer. Precipitation and soil water content affected daily $N_2O$ flux during non-growing season. Especially, $N_2O$ flux was strongly associated with water filled pore space (WFPS). We assumed that the majority of $N_2O$ measured during growing season of sweet potato was produced from nitrification and subsequent denitrification. Annual cumulative $N_2O$ emission rate significantly increased with increasing application ratio of composted animal manure. It increased to 12.0 kg/ha/yr from 8.73 kg/ha/yr at control with 10 Mg/ha of composted animal manure and to 14.0 kg/ha/yr of $N_2O$ emission with 20 Mg/ha of the manure. CONCLUSION: To reduce $N_2O$ emission from arable soil, further research on developing management strategy associated with use of the composted animal manure and soil moisture is needed.

The Influence of Composted Animal Manure Application on Nitrous Oxide Emission from Upland Soil

  • Kim, Sung Un;Choi, Eun-Jung;Jeong, Hyun-Cheol;Lee, Jong-Sik;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.530-537
    • /
    • 2017
  • Composted animal manure added for improving soil quality and enhancing crop productivity can lead to greenhouse gas emissions such as nitrous oxide ($N_2O$) by processes of nitrification and denitrification. In addition, the amount of $N_2O$ emission from composted manure amended soils can vary greatly with composted manure type or different soil type. Therefore, the influence of cattle composted manure on $N_2O$ emissions was evaluated during growth of sweet potato (Ipomoea batatas). The treatments included control, conventional fertilization (CF), and CF + cattle composted manure (CCM) $10Mg\;ha^{-1}$ were applied in the spring. $N_2O$ emissions were significantly affected by composted manure and chemical fertilizer and the CCM had greater N2O emissions compared with other treatments. The majority of $N_2O$ emissions occurred shortly after composted manure and chemical fertilizer application compared with the rest of the growing seasons for all treatments. Also, $N_2O$ flux was associated with water-filled pore space (WFPS) at all treatments. On average of $N_2O$ emission accumulation, the CCM was 1.5 times greater than control treatment while there was no difference between CF and control.

Influences of Phosphorus Content and Phytase Activity from the Vermicomposting Environment (Vermicomposting 조건에서 분리한 Phytase의 활성화의 인 함량에 미치는 영향)

  • 이주삼
    • Journal of Animal Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.45-52
    • /
    • 2000
  • The effect of earthworm on the recycling or control of organic P in environment has been investigated. The activity of phytase(myo-inositol hexaposphate phosphohydrolase, EC 3.1.3.8) produced by isolated microoganisms from vermicomposted cow manure was usually higher than that of phytase produced by isolated microorganisms from composted cow manure. However the activity of phytase excreted by seperated earthworm(Eisenia foetida) was not detected. The concentration of total P and available P was revealed 2.88%, 0.22% in composted cow manure and 1.70% 0.14% in vermicomposted cow manure.

  • PDF

Effect of Composted Animal Manure Application on Growth and Yield of Tomatoes and Changes of Soil Nutrients (발효퇴비 시용이 토마토의 생육 , 수량 및 토양중 양분변화에 미치는 영향)

  • Jun, Dae-Woo;Ku, Ja-Hyeong;Lee, Young-Bok;Lee, Jong-Suk;Moon, Chang-Shik
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.254-259
    • /
    • 1998
  • This study was focused on finding out the potential problems associated with organic farming system. The effect of composted animal manures subsequent inoculation of microbes on growth and yield of tomatoes (Lycopersicon esculentum Mill. 'Minicarol') were examined to develop a proper organic farming practice. Plant heights were greater in composted manure treatment than in conventional practice, whereas widths of leaves were higher in conventional field. Chlorophyll contents between various amount of composted manure application were gradually decreased and showed no significant differences after 45 days of planting. The yield in the treatment applied 12 ton of composted animal manure per 10a as pre-planting fertilizer and following microbial inoculation were only 50-60% compared to that of conventional farming. However, yield increased up to 80% when additional composts were applied to the treatment received 6 ton of composted animal manure per 10a in the middle of cultivation. Microbial inoculation followed by composted manure application induced rapid decrease of nitrogen content in soil. However, the density of microorganisms was significantly increased. Tomatoes produced through organic farming were clear in color, Further, soluble solid and acid content were increased. The highest level of acid and solids were observed in the treatment applied 12 ton of digested swine manure per 10a. Although nitrogen content including ammonium and nitrate rapidly increased after application of composts, these were significantly reduced approximately 4-5 weeks after planting. The level of phosphorus, potassium, magnesium and calcium showed gradual decrease compared to nitrogen.

  • PDF

EFFECT OF GRASS FILTER STRIPS ON REDUCING $PO_4$-P LOSS IN RUNOFF FROM FORAGE CROPLAND

  • Jung, M.W.;Jo, N.C.;Yoon, S.H.;Kim, W.H.;Kim, K.Y.;Sung, S.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.169-173
    • /
    • 2011
  • The performance of grass filter strips (GFS) in abating $PO_4$-P concentrations from the forage cropland was tested in an experiment on the 10% slope in Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration (RDA) from October 2007 to September 2009. Forage croplands with rye-corn double cropping system applied with chemical fertilizer and livestock manure (LM) were compared in a natural condition. The plots were hydrologically isolated Main plots consisted of the length of GFS, such as 0m, 5m, 10m and 15m. Sub plots consisted of the type of LM, such as chemical fertilizer (CF), composted cattle manure (CCM) and composted swine manure (CSM). Concentrations of PO4-P in surface runoff water were reduced as the length of GFS increased. Especially, GFS with 10m and 15m reduced $PO_4$-P concentrations significantly compared to that with 0m and 5m (p<0.05). The results from this study suggest that GFS improved the removal and trapping $PO_4$-P from forage croplands.

Nitrogen Losses During Animal Manure Management : A review (가축분뇨관리 과정 중 손실되는 질소 : A review)

  • Choi, Dong-Yoon;Song, Jun-Ik;Park, Kyu-Hyun;Khan, Modabber A.;Ahn, Heekwon
    • Journal of Animal Environmental Science
    • /
    • v.18 no.sup
    • /
    • pp.73-80
    • /
    • 2012
  • Nitrogen included in animal manure can be used as organic fertilizer if it is treated properly but it may cause serious air and water pollution without proper management. Significant amount of nitrogen losses happen in the form of ammonia when the manure staying in animal house and storage facilities and being composted and applied to the field. In order to maximize the manure nitrogen utilization, it is important to understand the mechanisms of nitrogen loss during the diverse manure handling and treatment procedures. The plant available nitrogen portion of total nitrogen in excreted manure was evaluated based on animal type, animal manure collection system, manure treatment process, and application method. About 27% of nitrogen included in excreted pig manure could be plant available if it is applied to the filed after composting process. The plant available nitrogen portion varies from 29% (surface application) to 54% (solid injection) based on application method of digestated piggery slurry. Plant can use 18% of manure nitrogen if the composted cattle and poultry manure applied to the field using surface application method. Manure treatment and application methods need to be carefully selected to control and utilize the manure nitrogen properly.

Isolation and Characterization of Novel Denitrifying Bacterium Geobacillus sp. SG-01 Strain from Wood Chips Composted with Swine Manure

  • Yang, Seung-Hak;Cho, Jin-Kook;Lee, Soon-Youl;Abanto, Oliver D.;Kim, Soo-Ki;Ghosh, Chiranjit;Lim, Joung-Soo;Hwang, Seong-Gu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.11
    • /
    • pp.1651-1658
    • /
    • 2013
  • Nitrate contamination in ground and surface water is an increasingly serious environmental problem and only a few bacterial strains have been identified that have the ability to remove nitrogen pollutants from wastewater under thermophilic conditions. We therefore isolated thermophilic facultative bacterial strains from wood chips that had been composted with swine manure under aerated high temperature conditions so as to identify strains with denitrifying ability. Nine different colonies were screened and 3 long rod-shaped bacterial strains designated as SG-01, SG-02, and SG-03 were selected. The strain SG-01 could be differentiated from SG-02 and SG-03 on the basis of the method that it used for sugar utilization. The 16S rRNA genes of this strain also had high sequence similarity with Geobacillus thermodenitrificans $465^T$ (99.6%). The optimal growth temperatures ($55^{\circ}C$), pH values (pH 7.0), and NaCl concentrations (1%) required for the growth of strain SG-01 were established. This strain reduced 1.18 mM nitrate and 1.45 mM nitrite in LB broth after 48 h of incubation. These results suggest that the G. thermodenitrificans SG-01 strain may be useful in the removal of nitrates and nitrites from wastewater generated as a result of livestock farming.

Nutrient production from Korean poultry and loading estimations for cropland

  • Won, Seunggun;Ahmed, Naveed;You, Byung-Gu;Shim, Soomin;Kim, Seung-Su;Ra, Changsix
    • Journal of Animal Science and Technology
    • /
    • v.60 no.2
    • /
    • pp.3.1-3.9
    • /
    • 2018
  • Background: Poultry breeding has increased by 306% in Korea, inevitably increasing the production of manure which may contribute to environmental pollution. The nutrients (NP) in the manure are essential for crop cultivation and soil fertility when applied as compost. Excess nutrients from manure can be accumulated on the land and can lead to eutrophication. Therefore, a nutrient load on the finite land should be calculated. Methods: This study calculates the nutrient production from Korean poultry by investigating 11 broiler and 16 laying hen farms. The broiler manure was composted using deep litter composting while for layer deep litter composting, drying, and simple static pile were in practice. The effect of weight reduction and storing period during composting was checked. Three weight reduction cases of compost were constructed to calculate nutrient loading coefficients (NLCs) using data from; i) farm investigation, ii) theoretical P changes (${\Delta}P=0$), and iii) dry basis. Results: During farm investigation of broiler and layer with deep litter composting, there was a 68 and 21% N loss whereas 77 and 33% P loss was found, respectively. In case of layer composting, a loss of 10-56% N and a 52% P loss was observed. Drying manure increased the P concentrations therefore NLCs calculated using dry basis that showed quite higher reductions (67% N; 53% P). Nutrient loss from farm investigation was much higher than reported by Korean Ministry of Environment (ME). Conclusions: Nutrients in manure are decreased when undergo storing or composting process due to microbial action, drying, and leaching. The nutrient load applied to soil is less than the fresh manure, hence the livestock manure management and conservation of environment would be facilitated.

Effect of Compost Turning Frequency on the Composting and Biofiltration (퇴비화 및 탈취처리에 퇴비 혼합 교반 빈도가 미치는 영향)

  • Hong Ji-Hyung;Park Keum-Joo
    • Journal of Animal Environmental Science
    • /
    • v.12 no.2
    • /
    • pp.85-94
    • /
    • 2006
  • The effects of turning frequency of in-vessel composting on ammonia emissions during composting of separated solids from swine slurry/sawdust mixtures and performance of biofiltration using the chicken manure compost were investigated. Separated solids from swine manure amended with sawdust was composted in a 226 L laboratory-scale in-vessel reactors under various turning frequency and continuous airflow (0.6 L/min.kg.dm) for three weeks. Three laboratory-scale manure compost biofilters were built to treat effluent gas from the composting of separated solid from swine manure amened with sawdust process. These experiments were continued over a period of three weeks. The composting of separated solid swine manure amended with sawdust and manure compost biofiltration system were evaluated to determine the turning frequency type that would be adequate for the rate of decomposition and compost odour reduction. The compost odour cleaning was measured based on ammonia gas concentration before and after passing through the manure compost biofilter. The average ammonia odor reduction in the manure compost biofilter was 96.9 % at R1 (no turning), 99.4 % at R2(once a day turning) and 89.0 % at R3(twice a day turning), respectively. The efficiency of ammonia reduction was mainly influenced by the turning frequency.

  • PDF

Effect of aerobically treated manure on odorous material emissions from a swine finishing barn equipped with a continuous pit recirculation system

  • Choi, Yongjun;Ha, Duck-Min;Lee, Sangrak;Kim, Doo-Hwan
    • Animal Bioscience
    • /
    • v.35 no.2
    • /
    • pp.308-316
    • /
    • 2022
  • Objective: This study was conducted to determine reduction of various odorous materials from a swine farm equipped with a continuous pit recirculation system (CPRS) with aerobically treated liquid manure. Methods: The CPRS is used in swine farms in South Korea, primarily to improve air quality in pig houses. In this study, CPRS consists of a manure aerobic treatment system and a fit recirculation system; the solid fraction is separated and composted, whereas the aerobically treated liquid fraction (290.0%±21.0% per day of total stored swine slurry) is continuously returned to the pit. Four confinement pig barns in three piggery farms were used; two were equipped with CPRS and the other two operated a slurry pit under the slatted floor. Results: All chemical contents of slurry pit manure in the control were greater than those of slurry pit manure in the CRPS treatment (p<0.05). Electrical conductivity and pH contents did not differ among treatments. The biological oxygen demand of the slurry pit treatment was greater than that of the other treatments (p<0.05). Total nitrogen, total phosphorus, and ammonia nitrogen contents of the slurry pit treatment were greater than those of other treatments (p<0.05). Odor intensity of the CPRS treatment was lower than that of the control at indoor, exhaust, and outside sampling points (p<0.05). The temperature and carbon dioxide of the CPRS treatment in the pig barn was significantly lower than those of control (p<0.05). All measured odorous material contents of the CPRS group were significantly lower than those of the control group (p<0.05). Conclusion: The CPRS application in pig farms is considered a good option as it continuously reduces the organic load of animal manure and lowers the average odorant concentration below the threshold of detecting odorous materials.