• 제목/요약/키워드: Composition operator

검색결과 93건 처리시간 0.02초

COMPOSITION OPERATORS ON UNIFORM ALGEBRAS AND THE PSEUDOHYPERBOLIC METRIC

  • Galindo, P.;Gamelin, T.W.;Lindstrom, M.
    • 대한수학회지
    • /
    • 제41권1호
    • /
    • pp.1-20
    • /
    • 2004
  • Let A be a uniform algebra, and let $\phi$ be a self-map of the spectrum $M_A$ of A that induces a composition operator $C_{\phi}$, on A. It is shown that the image of $M_A$ under some iterate ${\phi}^n$ of \phi is hyperbolically bounded if and only if \phi has a finite number of attracting cycles to which the iterates of $\phi$ converge. On the other hand, the image of the spectrum of A under $\phi$ is not hyperbolically bounded if and only if there is a subspace of $A^{**}$ "almost" isometric to ${\ell}_{\infty}$ on which ${C_{\phi}}^{**}$ "almost" an isometry. A corollary of these characterizations is that if $C_{\phi}$ is weakly compact, and if the spectrum of A is connected, then $\phi$ has a unique fixed point, to which the iterates of $\phi$ converge. The corresponding theorem for compact composition operators was proved in 1980 by H. Kamowitz [17].

Weak Hyponomal Composition Operators Induced by a Tree

  • Lee, Mi-Ryeong;Ahn, Hyo-Gun
    • Kyungpook Mathematical Journal
    • /
    • 제50권1호
    • /
    • pp.89-100
    • /
    • 2010
  • Let g = (V, E, ${\mu}$) be a weighted directed tree, where V is a vertex set, E is an edge set, and ${\mu}$ is ${\sigma}$-finite measure on V. The tree g induces a composition operator C on the Hilbert space $l^2$(V). Hand-type directed trees are defined and characterized the weak hyponormalities of such C in this note. Also some additional related properties are discussed. In addition, some examples related to directed hand-type trees are provided to separate classes of weak-hyponormal operators.

BESSEL MULTIPLIERS AND APPROXIMATE DUALS IN HILBERT C -MODULES

  • Azandaryani, Morteza Mirzaee
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1063-1079
    • /
    • 2017
  • Two standard Bessel sequences in a Hilbert $C^*$-module are approximately duals if the distance (with respect to the norm) between the identity operator on the Hilbert $C^*$-module and the operator constructed by the composition of the synthesis and analysis operators of these Bessel sequences is strictly less than one. In this paper, we introduce (a, m)-approximate duality using the distance between the identity operator and the operator defined by multiplying the Bessel multiplier with symbol m by an element a in the center of the $C^*$-algebra. We show that approximate duals are special cases of (a, m)-approximate duals and we generalize some of the important results obtained for approximate duals to (a, m)-approximate duals. Especially we study perturbations of (a, m)-approximate duals and (a, m)-approximate duals of modular Riesz bases.