
J. Korean Math. Soc. 54 (2017), No. 4, pp. 1063–1079
https://doi.org/10.4134/JKMS.j150701
pISSN: 0304-9914 / eISSN: 2234-3008

BESSEL MULTIPLIERS AND APPROXIMATE DUALS IN

HILBERT C∗-MODULES

Morteza Mirzaee Azandaryani

Abstract. Two standard Bessel sequences in a Hilbert C∗-module are
approximately duals if the distance (with respect to the norm) between
the identity operator on the Hilbert C∗-module and the operator con-
structed by the composition of the synthesis and analysis operators of
these Bessel sequences is strictly less than one. In this paper, we intro-
duce (a,m)-approximate duality using the distance between the identity
operator and the operator defined by multiplying the Bessel multiplier
with symbol m by an element a in the center of the C∗-algebra. We show
that approximate duals are special cases of (a,m)-approximate duals and
we generalize some of the important results obtained for approximate
duals to (a,m)-approximate duals. Especially we study perturbations of
(a,m)-approximate duals and (a,m)-approximate duals of modular Riesz
bases.

1. Introduction

Frames for Hilbert spaces were first introduced by Duffin and Schaeffer [12]
in 1952 to study some problems in nonharmonic Fourier series, reintroduced
in 1986 by Daubechies, Grossmann and Meyer [11]. Various generalizations of
frames have been introduced, e.g. g-frames [37].

Hilbert C∗-modules are generalizations of Hilbert spaces by allowing the
inner product to take values in a C∗-algebra rather than in the field of complex
numbers. In [15] Frank and Larson presented a general approach to the frame
theory in Hilbert C∗-modules. Also, g-frames have been introduced in Hilbert
C∗-modules (see [20]).

Bessel multipliers in Hilbert spaces were introduced by Balazs in [2]. As we
know in frame theory, the composition of the synthesis and analysis operators
of a frame is called the frame operator. We see in [2] that a multiplier for two
Bessel sequences is an operator that combines the analysis operator, a multi-
plication pattern with a fixed sequence, called the symbol, and the synthesis
operator. Bessel multipliers have useful applications, for example they are used
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for solving approximation problems and they have applications as time-variant
filters in acoustical signal processing, for more information see [3, 35]. Mul-
tipliers have been investigated for Bessel fusion sequences in Hilbert spaces
[27] (called Bessel fusion multipliers) and for generalized Bessel sequences in
Hilbert spaces [32] (called g-Bessel multipliers). Also multipliers were intro-
duced for p-Bessel sequences in Banach spaces [33] and for continuous frames
[5]. Recently the present author and A. Khosravi generalized Bessel multipliers,
g-Bessel multipliers and Bessel fusion multipliers to Hilbert C∗-modules and
it was shown that they share many useful properties with their corresponding
notions in Hilbert and Banach spaces (see [24]).

Approximate duals in frame theory have important applications, especially
are used for the reconstruction of signals when it is difficult to find alternate
duals. Approximate duals are useful for wavelets [9, 16], [18, Section 2.13],
Gabor systems [6, 38], [14, Sections 3,4], in coorbit theory [13] and in sensor
modeling [28]. Approximate duality of frames in Hilbert spaces was recently
investigated in [10] and some interesting applications of approximate duals were
obtained. For example, it was shown how approximate duals can be obtained
via perturbation theory and some applications of approximate duals to Gabor
frames especially Gabor frames generated by the Gaussian were presented. In
Section 6 in [10], some numerical approaches to construct approximate duals
have been stated. Also, approximate duality for g-frames has been introduced
in [23] and it was shown in [23] that approximate duals are stable under small
perturbations and they are useful for erasures. Moreover approximate duals of
frames and g-frames have been generalized to Hilbert C∗-modules [29].

Let F be a Bessel sequence in a Hilbert space H with the synthesis operator
TF . Then the Bessel sequence G is called an approximate dual of F if there
exists 0 ≤ K < 1 with

‖f − TGT
∗
Ff‖ ≤ K‖f‖, ∀f ∈ H.

By Neumann algorithm TGT ∗
F is invertible and the inverse of this operator is

used in the process of the reconstruction.
In this paper, we introduce (a,m)-approximate duals in Hilbert C∗-modules

which generalize approximate duals of frames and g-frames. First in the fol-
lowing section, we recall the definitions of frames and g-frames in Hilbert C∗-
modules.

2. Frames and g-frames in Hilbert C∗-modules

Let A be a unital C∗-algebra and suppose that E is a left A-module such that
the linear structures of A and E are compatible. Then E is called a pre-Hilbert
A-module if E is equipped with an A-valued inner product 〈·, ·〉 : E×E −→ A,
such that

(i) 〈αx+ βy, z〉 = α〈x, z〉+ β〈y, z〉 for each α, β ∈ C and x, y, z ∈ E;
(ii) 〈ax, y〉 = a〈x, y〉 for each a ∈ A and x, y ∈ E;
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(iii) 〈x, y〉 = 〈y, x〉∗ for each x, y ∈ E;
(iv) 〈x, x〉 ≥ 0 for each x ∈ E and if 〈x, x〉 = 0, then x = 0.

For each x ∈ E, we define ‖x‖ = ‖〈x, x〉‖ 1

2 and |x| = 〈x, x〉 1

2 . If E is complete
with ‖ · ‖, it is called a Hilbert A-module or a Hilbert C∗-module over A. We
call Z(A) = {a ∈ A : ab = ba, ∀b ∈ A}, the center of A. Note that if a ∈ Z(A),
then a∗ ∈ Z(A), and if a is an invertible element of Z(A), then a−1 ∈ Z(A),

also if a is a positive element of Z(A), since a
1

2 is in the closure of the set of

polynomials in a, we have a
1

2 ∈ Z(A). Let E and F be Hilbert A-modules.
An operator T : E −→ F is called adjointable if there exists an operator
T ∗ : F −→ E such that 〈T (x), y〉 = 〈x, T ∗(y)〉 for each x ∈ E and y ∈ F .
Every adjointable operator T is bounded and A-linear (that is, T (ax) = aT (x)
for each x ∈ E and a ∈ A). We denote the set of all adjointable operators from
E into F by L(E,F ). Note that L(E,E) is a C∗-algebra and it is denoted by
L(E). A Hilbert A-module E is finitely generated if there exists a finite set
{x1, . . . , xn} ⊆ E such that every element x ∈ E can be expressed as an A-
linear combination x =

∑n
i=1 aixi, ai ∈ A. A Hilbert A-module E is countably

generated if there exists a countable set {xi}i∈I ⊆ E such that E equals the
norm-closure of the A-linear hull of {xi}i∈I . For more details about Hilbert
C∗-modules, see [26].

Definition 2.1. Let E be a Hilbert A-module. A family {fi}i∈I ⊆ E is a
frame for E, if there exist real constants 0 < A ≤ B < ∞, such that for each
x ∈ E,

(1) A〈x, x〉 ≤
∑

i∈I

〈x, fi〉〈fi, x〉 ≤ B〈x, x〉.

The numbers A and B are called the lower and upper bound of the frame, re-
spectively. In this case we call it an (A,B) frame. If only the second inequality
is required, we call it a Bessel sequence. If the sum in (1) converges in norm,
the frame is called standard.

Let F = {fi}i∈I and G = {gi}i∈I be standard Bessel sequences in E. Then
we say that G (resp. F) is an alternate dual or a dual of F (resp. G), if
x =

∑
i∈I〈x, fi〉gi or equivalently x =

∑
i∈I〈x, gi〉fi for each x ∈ E (see [17,

Proposition 3.8]).
Let {Ei}i∈I be a sequence of finitely or countably generated Hilbert C∗-

modules over a unital C∗-algebra A. A sequence Λ = {Λi ∈ L(E,Ei) : i ∈ I} is
called a g-frame for E with respect to {Ei : i ∈ I} if there exist real constants
A,B > 0 such that

A〈x, x〉 ≤
∑

i∈I

〈Λix,Λix〉 ≤ B〈x, x〉

for each x ∈ E. In this case we call it an (A,B) g-frame. If only the second-
hand inequality is required, then Λ is called a g-Bessel sequence. Note that
standard g-frames are defined similar to the standard frames.
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Recall that if Λ = {Λi}i∈I and Γ = {Γi}i∈I are standard g-Bessel sequences
such that

∑
i∈I Γ

∗
iΛix = x or equivalently

∑
i∈I Λ

∗
iΓix = x for each x ∈ E,

then Γ (resp. Λ) is called a g-dual of Λ (resp. Γ).
For more results about frames and g-frames in Hilbert C∗-modules, see [1,

15, 20, 39].
In this paper all C∗-algebras are assumed to be unital and all Hilbert C∗-

modules are assumed to be finitely or countably generated. All frames, g-frames
and Bessel sequences are assumed to be standard and all index sets are assumed
to be finite or countable subsets of N.

3. (a,m)-approximate duality of frames and g-frames

Recall that ℓ∞(I,A) is

{
{ai}i∈I ⊆ A : ‖{ai}‖∞ = sup{‖ai‖ : i ∈ I} < ∞

}
.

In this note m is always a sequence {mi}i∈I ∈ ℓ∞(I,A) with mi ∈ Z(A), for
each i ∈ I. Each sequence with these properties is called a symbol.

Let E1 and E2 be Hilbert A-modules, and let F = {fi}i∈I ⊆ E1 and G =
{gi}i∈I ⊆ E2 be standard Bessel sequences. It was proved in [24] that the op-
erator Mm,G,F : E1 −→ E2 which is defined by Mm,G,F(x) =

∑
i∈I mi〈x, fi〉gi,

is adjointable.

Definition 3.1. Mm,G,F is called the Bessel multiplier for the Bessel sequences
F and G with symbol m. If mi = 1A for each i ∈ I, then we denote Mm,G,F
by MGF .

In this paper F = {fi}i∈I and G = {gi}i∈I are standard Bessel sequences in
a Hilbert C∗-module E, so Mm,G,F ∈ L(E).

Let Λ = {Λi}i∈I and Γ = {Γi}i∈I be standard g-Bessel sequences for E
with respect to {Ei}i∈I . Then it was shown in [24] that the operator Mm,Γ,Λ :
E −→ E which is defined by Mm,Γ,Λ(x) =

∑
i∈I miΓ

∗
iΛix is adjointable.

Definition 3.2. Mm,Γ,Λ is called the g-Bessel multiplier for the g-Bessel se-
quences Λ and Γ with symbol m. If mi = 1A for each i ∈ I, then Mm,Γ,Λ is
denoted by MΓΛ.

We recall the definitions of approximate duals and approximate g-duals in
Hilbert C∗-modules from [29].

Definition 3.3. (i) Two standard g-Bessel sequences Λ and Γ are approx-
imately dual g-frames if ‖IdE −MΓΛ‖ < 1. In this case, we say that Γ
is an approximate g-dual of Λ.

(ii) Two standard Bessel sequences F and G are approximately dual frames
if ‖IdE−MGF‖ < 1. In this case, we say that G is an approximate dual
of F .

Note that if a ∈ Z(A) and T ∈ L(E), then the operator aT : E −→ E which
is defined by (aT )(x) = aT (x) is adjointable with (aT )∗ = a∗T ∗.
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Definition 3.4. Let m be a symbol and a ∈ Z(A).

(i) Let Λ and Γ be standard g-Bessel sequences. Then we say that Γ
is an (a,m)-approximate g-dual (resp. (a,m)-g-dual) of Λ if ‖IdE −
aMm,Γ,Λ‖ < 1 (resp. IdE = aMm,Γ,Λ).

(ii) Let F and G be standard Bessel sequences. Then we say that G is an
(a,m)-approximate dual (resp. (a,m)-dual) of F if ‖IdE−aMm,G,F‖ <
1 (resp. IdE = aMm,G,F).

Note that if a = 1A, mi = 1A for each i ∈ I, then (a,m)-approximate duality
coincides with the concept of approximate duality stated in Definition 3.3.

The following result is a generalization of parts (i) of Proposition 2.3 in [23]
and Theorem 3.2 in [29] to (a,m)-approximate g-duals:

Theorem 3.5. Let Γ be an (a,m)-approximate g-dual of Λ. Then

(i) Λ and Γ are standard g-frames.
(ii) Λ is an (a∗,m∗)-approximate g-dual of Γ, where m∗ = {m∗

i }i∈I.

Proof. (i) Since ‖IdE − aMm,Γ,Λ‖ < 1, aMm,Γ,Λ is invertible. Let T be the in-
verse of aMm,Γ,Λ. Then (aT )Mm,Γ,Λ = T (aMm,Γ,Λ) = IdE and Mm,Γ,Λ(aT ) =
(aMm,Γ,Λ)T = IdE . Hence Mm,Γ,Λ is invertible. It was shown in [24] that
M∗

m,Γ,Λ = Mm∗,Λ,Γ, so Mm,Γ,Λ and Mm∗,Λ,Γ are invertible and consequently

they are bounded below. Now by Proposition 3.9 in [24], Λ and Γ are standard
g-frames.

(ii) The result follows from the equality

‖IdE − aMm,Γ,Λ‖ = ‖(IdE − aMm,Γ,Λ)
∗‖ = ‖IdE − a∗Mm∗,Λ,Γ‖. �

Remark 3.6. Let F = {fi}i∈I and G = {gi}i∈I ⊆ E be standard Bessel se-
quences. It was shown in Example 3.1 in [20] that if φi, ψi : E −→ A are
defined by φi(x) = 〈x, fi〉, ψi(x) = 〈x, gi〉, then Φ = {φi}i∈I and Ψ = {ψi}i∈I

are standard g-Bessel sequences and in this case Mm,Ψ,Φ = Mm,G,F ([24, Re-
mark 3.6]). Thus if G is an (a,m)-approximate dual (resp. (a,m)-dual) of F ,
then Ψ is an (a,m)-approximate g-dual (resp. (a,m)-g-dual) of Φ.

Using the above theorem and remark, we get the following result which is a
generalization of part (i) of Corollary 3.3 in [29] to (a,m)-approximate duals:

Corollary 3.7. Let G be an (a,m)-approximate dual of F . Then

(i) F and G are standard frames.
(ii) F is an (a∗,m∗)-approximate dual of G.
It follows from the proof of Theorem 3.5 that if T is the inverse of aMm,Γ,Λ,

then aT is the inverse of Mm,Γ,Λ. Hence if Γ is an (a,m)-approximate g-dual

of Λ, then using Neumann series, we get M−1
m,Γ,Λ = a

∑∞
n=0(IdE − aMm,Γ,Λ)

n,
and for each x ∈ E, we have the following reconstruction formula:

x =Mm,Γ,ΛM
−1
m,Γ,Λx = a

∞∑

n=0

Mm,Γ,Λ(IdE − aMm,Γ,Λ)
nx.
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The following remark shows that (a,m)-approximate duals generate dual frames
(we state the following remark for Hilbert spaces because of more applications).

Remark 3.8. Suppose thatH is a Hilbert space, {Hi}i∈I is a sequence of Hilbert
spaces, Λ = {Λi ∈ L(H,Hi) : i ∈ I} and Γ = {Γi ∈ L(H,Hi) : i ∈ I}, where
L(H,Hi) is the set of all linear and bounded operators from H into Hi. Also
assume that α ∈ C and m = {mi}i∈I ⊆ C. If Γ is an (α,m)-approximate
g-dual of Λ, then for each x ∈ H , we have

x =Mm,Γ,ΛM
−1
m,Γ,Λx

=
∑

i∈I

miΓ
∗
iΛiM

−1
m,Γ,Λx =

∑

i∈I

Γ∗
i (αmiΛi

∞∑

n=0

(IdH − αMm,Γ,Λ)
nx).

Therefore {αmiΛi

∑∞
n=0(IdH − αMm,Γ,Λ)

n}i∈I is a g-dual of Γ.
Using the above remark and Remark 3.6, we can construct duals for Bessel

sequences in Hilbert spaces using Bessel multipliers, i.e., if F = {fi}i∈I ,G =
{gi}i∈I ⊆ H such that G is an (α,m)-approximate dual of F , then

{αmi

∞∑

n=0

(IdH − αMm,F ,G)
nfi}i∈I

is a dual of G, where m = {mi}i∈I .

We recall the following definition and theorem from [4]:

Definition 3.9. Let H be a Hilbert space, F = {fi}i∈I ⊆ H and ω = {ωi : i ∈
I} ⊆ R+(ω is a sequence of positive weights). Then (ω,F) is called a ω-frame
if there exist constants 0 < A,B <∞ such that

A‖f‖2 ≤
∑

i∈I

ωi|〈f, fi〉|2 ≤ B‖f‖2.

In this case F is called a weighted frame.

A sequence {ci}i∈I is called semi-normalized if there are constants b ≥ a > 0
such that a ≤ |ci| ≤ b for each i ∈ I.

Theorem 3.10. Let F = {fi}i∈I be a sequence in H. Let {mi}i∈I be a positive,
semi-normalized sequence. Then the following are equivalent.

(i) F is a frame.
(ii) Mm,F ,F is a positive and invertible operator.
(iii) There are constants R, r ≥ 0 such that

r‖f‖2 ≤
∑

i∈I

mi|〈f, fi〉|2 ≤ R‖f‖2

for each f ∈ H.
(iv) {√mifi}i∈I is a frame.
(v) Mm′,F ,F is a positive and invertible operator for each positive, semi-

normalized sequence m′ = {m′
i}i∈I .
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The above theorem makes a relationship between weighted frames and Bessel
multipliers, so (a,m)-approximte duals can be useful for weighted frames.

Recall from [25] that a frame {fi}i∈I for a Hilbert space H is called scalable
if there exist scalars ci ≥ 0, i ∈ I such that {cifi}i∈I is a Parseval frame (the
frame bounds are equal to 1). If, in addition, ci > 0 for each i ∈ I, then {fi}i∈I

is called positively scalable. It is clear that F is a weighted frame if and only if

{ω
1

2

i fi}i∈I is a frame. Therefore a positively scalable frame can be assumed as
some kind of weighted frame (with ω = {c2i }i∈I), so (a,m)-approximate duals
have applications for scalable frames.

Proposition 3.11. Suppose that m = {mi}i∈I is a symbol such that there
exists a positive number α with α1A ≤ mi for each i ∈ I. If Γ is an (a,m)-
approximate g-dual of Λ for some positive, invertible element a ∈ Z(A), then
Λ + Γ = {Λi + Γi}i∈I is a standard g-frame.

Proof. Because Γ is an (a,m)-approximate g-dual of Λ, by Theorem 3.5, both
of them are standard g-frames and Λ is an (a,m)-approximate g-dual of Γ,
so Proposition 3.7 in [24] yields that Mm,Λ,Λ and Mm,Γ,Γ are positive and
invertible operator and we have ‖IdE −aMm,Γ,Λ‖ < 1 and ‖IdE −aMm,Λ,Γ‖ <
1. Hence ‖2IdE − (aMm,Γ,Λ + aMm,Λ,Γ)‖ < 2 and since (aMm,Γ,Λ + aMm,Λ,Γ)
is self-adjoint, Lemma 2.2.2 in [31] implies that (aMm,Γ,Λ + aMm,Λ,Γ) is a
positive operator and using the invertibility of a, we get Mm,Γ,Λ +Mm,Λ,Γ is
also positive. Now it is easy to see that

Mm,(Λ+Γ),(Λ+Γ) =Mm,Λ,Λ +Mm,Λ,Γ +Mm,Γ,Λ +Mm,Γ,Γ.

SinceMm,Γ,Γ,Mm,Λ,Γ+Mm,Γ,Λ are positive operators andMm,Λ,Λ is invertible,

we have Mm,(Λ+Γ),(Λ+Γ) ≥ ‖M−1
m,Λ,Λ‖−1IdE , so Mm,(Λ+Γ),(Λ+Γ) is a positive

and invertible operator. Now Proposition 3.7 in [24] implies that Λ + Γ is a
standard g-frame. �

Corollary 3.12. Suppose that m = {mi}i∈I is a symbol such that there exists a
positive number α with α1A ≤ mi for each i ∈ I. If G is an (a,m)-approximate
dual of F for some positive, invertible element a ∈ Z(A), then F + G = {fi +
gi}i∈I is a standard frame.

Note that by considering a = 1A and mi = 1A for each i ∈ I in the above
proposition and corollary and using the fact that Hilbert spaces are special
cases of Hilbert C∗-modules, we conclude that Proposition 2.6 and Corollary
2.7 in [23] are special cases of Proposition 3.11 and Corollary 3.12, respectively.

The following result is a generalization of [23, Proposition 2.3(ii)] and [29,
Theorem 3.2(ii), (iii)] to (a,m)-approximate g-duals:

Proposition 3.13. Let Γ be an (a,m)-approximate g-dual of Λ. Then

(i) Ψ = {∑∞
n=0 Γi(IdE − a∗Mm∗,Λ,Γ)

n}i∈I is an (a,m)-g-dual of Λ.
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(ii) For each N ∈ N, define ψ
(N)
i =

∑N
n=0 Γi(IdE − a∗Mm∗,Λ,Γ)

n. Then

ΨN = {ψ(N)
i }i∈I is an (a,m)-approximate g-dual of Λ with ‖IdE −

aMm,ΨN ,Λ‖ ≤ ‖IdE−aMm,Γ,Λ‖N+1< 1 and IdE=limN→∞ aMm,ΨN ,Λ.

Proof. (i) Let T = (a∗Mm∗,Λ,Γ)
−1. Then (Mm∗,Λ,Γ)

−1 = a∗T , so M−1
m,Γ,Λ =

aT ∗. Now since T =
∑∞

n=0(IdE − a∗Mm∗,Λ,Γ)
n, it is easy to see that Ψ =

{ΓiT }i∈I is a standard g-Bessel sequence and

aMm,Ψ,Λx = a
∑

i∈I

miT
∗Γ∗

iΛix = aT ∗(Mm,Γ,Λx) = x

for each x ∈ E. This means that Ψ is an (a,m)-g-dual of Λ.

(ii) Define TN : E −→ E by TN =
∑N

n=0(IdE − a∗Mm∗,Λ,Γ)
n. Then ΨN =

{ΓiTN}i∈I , so ΨN is a standard g-Bessel sequence and for each x ∈ E, we have

Mm∗,Λ,ΓTNx =
∑

i∈I

m∗
iΛ

∗
iΓiTN(x) =

∑

i∈I

m∗
iΛ

∗
iψ

(N)
i (x) =Mm∗,Λ,ΨN

x.

Thus

a∗Mm∗,Λ,ΨN
= a∗Mm∗,Λ,ΓTN

=
[
IdE − (IdE − a∗Mm∗,Λ,Γ)

] N∑

n=0

(IdE − a∗Mm∗,Λ,Γ)
n

= IdE − (IdE − a∗Mm∗,Λ,Γ)
N+1.

This yields that

‖IdE−a∗Mm∗,Λ,ΨN
‖=‖(IdE−a∗Mm∗,Λ,Γ)

N+1‖ ≤ ‖IdE−a∗Mm∗,Λ,Γ‖N+1 < 1.

Therefore Λ is an (a∗,m∗)-approximate g-dual of ΨN and consequently ΨN is
an (a,m)-approximate g-dual of Λ. Since limN→∞ ‖IdE−a∗Mm∗,Λ,Γ‖N+1 = 0,
we have

lim
N→∞

‖IdE − aMm,ΨN ,Λ‖ = lim
N→∞

‖IdE − a∗Mm∗,Λ,ΨN
‖ = 0.

This completes the proof. �

The next corollary is a generalization of [10, Proposition 3.2] and [29, Corol-
lary 3.3(ii), (iii)] to (a,m)-approximate duals:

Corollary 3.14. Let G be an (a,m)-approximate dual of F . Then

(i) {∑∞
n=0(IdE − aMm,G,F)ngi}i∈I is an (a,m)-dual of F .

(ii) For each N ∈ N, define h
(N)
i =

∑N
n=0(IdE − aMm,G,F)ngi. Then

hN = {h(N)
i }i∈I is an (a,m)-approximate dual of F with ‖IdE −

aMm,hN ,F‖ ≤ ‖IdE−aMm,G,F‖N+1<1 and IdE=limN→∞ aMm,hN ,F .

Now we recall tensor products of C∗-algebras and Hilbert C∗-modules from
[31] and [26], respectively.
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Let A and A′ be two C∗-algebras. Then A ⊗ A′ is a C∗-algebra with the
spatial norm and for each a ∈ A and a′ ∈ A′, we have ‖a⊗ a′‖ = ‖a‖‖a′‖. The
multiplication and involution on simple tensors are defined by (a⊗a′)(b⊗b′) =
ab⊗ a′b′ and (a⊗ a′)∗ = a∗ ⊗ a′∗, respectively.

Now let E be a Hilbert A-module and E′ be a Hilbert A′-module. Then the
tensor product E ⊗ E′ is a Hilbert A ⊗ A′-module. The module action and
inner product for simple tensors are defined by (a⊗ a′)(x⊗ x′) = (ax)⊗ (a′x′)
and 〈x⊗x′, y⊗y′〉 = 〈x, y〉⊗〈x′, y′〉, respectively. Let U and U ′ be adjointable
operators on E and E′, respectively. Then the tensor product U ⊗ U ′ is an
adjointable operator on E ⊗ E′. Also (U ⊗ U ′)∗ = U∗ ⊗ U ′∗ and ‖U ⊗ U ′‖ =
‖U‖‖U ′‖. For more results about tensor products of C∗-algebras and Hilbert
C∗-modules, see [26, 31].

Tensor products of frames and g-frames have been studied by some authors,
see [8, 19, 20, 22].

In the following theorem and proposition Λ′ = {Λ′
j ∈ L(E′, E′

j) : j ∈ J},
Γ′ = {Γ′

j ∈ L(E′, E′
j) : j ∈ J}, F ′ = {f ′

j}j∈J and G′ = {g′j}j∈J ⊆ E′,
where E′ and E′

j ’s are Hilbert A′-modules and m′ = {m′
j}j∈J ⊆ A′, a′ ∈ A′.

Also Λ ⊗ Λ′ = {Λi ⊗ Λ′
j}i∈I,j∈J , m ⊗m′ = {mi ⊗m′

j}i∈I,j∈J and F ⊗ F ′ =
{fi ⊗ f ′

j}i∈I,j∈J .

Theorem 3.15 ([30]). (i) If Λ and Λ′ are standard g-Bessel sequences, then
Λ ⊗ Λ′ is a standard g-Bessel sequence. Moreover Λ and Λ′ are standard g-
frames if and only if Λ⊗ Λ′ is a standard g-frame.

(ii) Let m and m′ be two symbols. If Λ and Γ are standard g-Bessel sequences
for E with respect to {Ei}i∈I and Λ′ and Γ′ are standard g-Bessel sequences for
E′ with respect to {E′

j}j∈J , then m⊗m′ is a symbol and M(m⊗m′),(Γ⊗Γ′),(Λ⊗Λ′)

=Mm,Γ,Λ ⊗Mm′,Γ′,Λ′ .

The next result is a generalization of [29, Proposition 3.6] to (a,m)-approx-
imate duality.

Proposition 3.16. (i) Let Γ be an (a,m)-approximate g-dual (resp. (a,m)-g-
dual) of Λ. If Γ′ is an (a′,m′)-g-dual of Λ′, then Γ⊗Γ′ is an (a⊗ a′,m⊗m′)-
approximate g-dual (resp. (a⊗ a′,m⊗m′)-g-dual) of Λ⊗ Λ′.

(ii) Let G be an (a,m)-approximate dual (resp. (a,m)-dual) of F . If G′ is an
(a′,m′)-dual of F ′, then G ⊗ G′ is an (a⊗ a′,m⊗m′)-approximate dual (resp.
(a⊗ a′,m⊗m′)-dual) of F ⊗ F ′.

Proof. (i) It follows from Theorem 3.15 that Λ⊗Λ′, Γ⊗Γ′ are standard g-Bessel
sequences,m⊗m′ is a symbol andM(m⊗m′),(Γ⊗Γ′),(Λ⊗Λ′) =Mm,Γ,Λ⊗Mm′,Γ′,Λ′ .
Now we get

‖(a⊗ a′)M(m⊗m′),(Γ⊗Γ′),(Λ⊗Λ′) − Id(E⊗E′)‖
= ‖aMm,Γ,Λ ⊗ a′Mm′,Γ′,Λ′ − IdE ⊗ IdE′‖
= ‖(aMm,Γ,Λ − IdE)⊗ IdE′‖ = ‖aMm,Γ,Λ − IdE‖ < 1.
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For (a,m)-g-duality, we have aMm,Γ,Λ = IdE and a′Mm′,Γ′,Λ′ = IdE′ , so

(a⊗ a′)M(m⊗m′),(Γ⊗Γ′),(Λ⊗Λ′) = aMm,Γ,Λ ⊗ a′Mm′,Γ′,Λ′ = IdE⊗E′ .

(ii) The result follows from Remark 3.6 and part (i). �

4. (a,m)-approximate duals, modular Riesz bases and
perturbations

In this section, we consider (a,m)-approximate duals of modular Riesz bases
and perturbations of (a,m)-approximate duals.

Note that if {Ei : i ∈ I} is a sequence of Hilbert A-modules, then ⊕i∈IEi,
which is the set

⊕i∈IEi =
{
{xi}i∈I : xi ∈ Ei and

∑

i∈I

〈xi, xi〉 is norm convergent in A

}
,

is a Hilbert A-module with pointwise operations and A-valued inner product
〈x, y〉 =

∑
i∈I〈xi, yi〉, where x = {xi}i∈I and y = {yi}i∈I . Recall that for

a standard g-Bessel sequence Λ, the operator TΛ : ⊕i∈IEi −→ E defined by
TΛ({xi}i∈I) =

∑
i∈I Λ

∗
i (xi) is called the synthesis operator of Λ. TΛ is ad-

jointable and T ∗
Λ(x) = {Λix}i∈I . Now we define the operator SΛ on E by

SΛx = TΛT
∗
Λ(x) =

∑
i∈I Λ

∗
iΛi(x). If Λ is a standard (A,B) g-frame, then A

IdE ≤ SΛ ≤ B IdE .
Note that if F = {fi}i∈I is a standard Bessel sequence (resp. frame), then

ΛF = {Λfi}i∈I is a standard g-Bessel sequence (resp. g-frame), where Λfi(x) =
〈x, fi〉, for each x ∈ E. We denote SΛF

by SF .

Let Λ = {Λi}i∈I be an (A,B) standard g-frame. We call Λ̃ = {Λ̃i}, where
Λ̃i = ΛiS

−1
Λ the canonical g-dual of Λ which is an ( 1

B
, 1
A
) standard g-frame.

We denote the canonical dual of a standard frame F = {fi}i∈I by F̃ = {f̃i}i∈I ,

where f̃i = S−1
F fi.

Now we recall the following definition from [21]:

Definition 4.1. (i) A standard g-frame Λ is a modular g-Riesz basis if it
has the following property:
if
∑

i∈Ω Λ∗
i gi = 0, where gi ∈ Ei and Ω ⊆ I, then gi = 0 for each i ∈ Ω.

(ii) A standard frame {fi}i∈I for E is a modular Riesz basis if it has the
following property:
if an A-linear combination

∑
i∈Ω aifi with coefficients {ai : i ∈ Ω} ⊆ A

and Ω ⊆ I is equal to zero, then ai = 0 for each i ∈ Ω.

As we know the canonical dual is the unique dual of a Riesz basis in a Hilbert
space. A similar result holds for modular Riesz bases in Hilbert C∗-modules,
see [21]. Now we have the following proposition and corollary for (a,m)-duals
and approximate duals of modular g-Riesz bases and modular Riesz bases which
generalize parts (iv) of Theorem 3.2 and Corollary 3.3 in [29], respectively.
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Proposition 4.2. Let a and mi’s be invertible elements of Z(A) and let Λ be
a modular g-Riesz basis. Then

(i) {(a∗m∗
i )

−1Λ̃i}i∈I is the unique (a,m)-g-dual of Λ.
(ii) If Γ is an (a,m)-approximate g-dual of Λ, then

Λ̃i = (a∗m∗
i )

∞∑

n=0

Γi(IdE − a∗Mm∗,Λ,Γ)
n.

Proof. (i) It is easy to see that {(a∗m∗
i )

−1Λ̃i}i∈I is a standard g-Bessel se-
quence. Let x ∈ E. Then

aM
m,{(a∗m∗

i
)−1Λ̃i}i∈I ,Λ

x =
∑

i∈I

ami[(a
∗m∗

i )
∗]−1Λ̃i

∗
Λi(x) =

∑

i∈I

Λ̃i

∗
Λix = x.

This shows that {(a∗m∗
i )

−1Λ̃i}i∈I is an (a,m)-g-dual of Λ. Now let Γ = {Γi}i∈I

and Ψ = {ψi}i∈I be (a,m)-g-duals of Λ. Then for each x ∈ E
∑

i∈I

a∗m∗
iΛ

∗
iΓix = x =

∑

i∈I

a∗m∗
iΛ

∗
iψix,

so
∑

i∈I Λ
∗
i (a

∗m∗
i (Γi−ψi)x) = 0. Since Λ is a modular g-Riesz basis, a∗m∗

i (Γi−
ψi)x = 0 for each i ∈ I. Because a∗m∗

i is invertible, we have (Γi −ψi)x = 0, so
Γi = ψi for each i ∈ I.

(ii) The result follows from (i) and Proposition 3.13. �

Corollary 4.3. Let a and mi’s be invertible elements of Z(A) and let F be a
modular Riesz basis. Then

(i) {(ami)
−1f̃i}i∈I is the unique (a,m)-dual of F .

(ii) If G is an (a,m)-approximate dual of F , then

f̃i = (ami)

∞∑

n=0

(IdE − aMm,G,F)
ngi.

Recall from [37] that {Λi ∈ L(H,Hi) : i ∈ I} is g-complete if {f : Λif =
0, ∀i ∈ I} = {0}, and we call it a g-Riesz basis for H , if it is g-complete and
there exist two constants 0 < A ≤ B < ∞, such that for each finite subset
F ⊆ I and fi ∈ Hi, i ∈ F ,

A
∑

i∈F

‖fi‖2 ≤
∥∥∥∥
∑

i∈F

Λ∗
i fi

∥∥∥∥
2

≤ B
∑

i∈F

‖fi‖2.

A family {fi}i∈I ⊆ H is complete if the span of {fi}i∈I is dense in H . We say
that {fi}i∈I is a Riesz basis for H , if it is complete in H and there exist two
constants 0 < A ≤ B <∞, such that

A
∑

i∈F

|ci|2 ≤
∥∥∥∥
∑

i∈F

cifi

∥∥∥∥
2

≤ B
∑

i∈F

|ci|2

for each sequence of scalars {ci}i∈F , where F is a finite subset of I.
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As a consequence of Proposition 4.2 and Corollary 4.3, we get the following
result.

Corollary 4.4. Suppose that α, mi’s are nonzero elements of C, m = {mi}i∈I

and m = {mi}i∈I .

(i) If Λ = {Λi ∈ L(H,Hi) : i ∈ I} is a g-Riesz basis, then { 1
αmi

Λ̃i}i∈I is

the unique (α,m)-g-dual of Λ.
(ii) If Γ = {Γi ∈ L(H,Hi) : i ∈ I} is an (α,m)-approximate g-dual of Λ

(Λ is a g-Riesz basis), then

Λ̃i =

∞∑

n=0

αmiΓi(IdH − αMm,Λ,Γ)
n.

(iii) If F = {fi}i∈I ⊆ H is a Riesz basis, then { 1
αmi

f̃i}i∈I is the unique

(α,m)-dual of F .
(iv) If G = {gi}i∈I ⊆ H is an (α,m)-approximate dual of F (F is a Riesz

basis), then f̃i =
∑∞

n=0 αmi(IdH − αMm,G,F)gi.

The next theorem and corollary are generalizations of [23, Proposition 3.10]
and [29, Proposition 3.8] to (a,m)-approximate duality of g-frames and frames,
respectively.

Theorem 4.5. Let 0 ≤ λ1, λ2 < 1. Suppose that Λ is a standard g-Bessel
sequence with upper bound B and Ψ = {ψi}i∈I is an (a,m)-g-dual of Λ with
upper bound D. If {Γi}i∈I is a sequence satisfying

(2)

∥∥∥∥
∑

i∈Ω

(Λ∗
i − Γ∗

i )fi

∥∥∥∥ ≤ λ1

∥∥∥∥
∑

i∈Ω

Λ∗
i fi

∥∥∥∥+ λ2

∥∥∥∥
∑

i∈Ω

Γ∗
i fi

∥∥∥∥+ ε

∥∥∥∥
∑

i∈Ω

|fi|2
∥∥∥∥

1

2

for each finite subset Ω ⊆ I, fi ∈ Ei with

λ1 + (‖a‖
√
D‖m‖∞)

[
ε+ λ2

[(1 + λ1)
√
B + ε]

(1 − λ2)

]
< 1,

then Ψ is an (a,m)-approximate g-dual of Γ.

Proof. It follows from the first part of the proof of Proposition 3.8 in [29]

that Γ is a standard g-Bessel sequence with upper bound C = [(1+λ1)
√
B+ε]2

(1−λ2)2
.

Since Λ and Γ are standard g-Bessel sequences,
∑

i∈I Λ
∗
i fi and

∑
i∈I Γ

∗
i fi are

convergent for each {fi}i∈I ∈ ⊕i∈IEi and by (2) we get

(3)

∥∥∥∥
∑

i∈I

Λ∗
i fi −

∑

i∈I

Γ∗
i fi

∥∥∥∥ ≤ λ1

∥∥∥∥
∑

i∈I

Λ∗
i fi

∥∥∥∥+ λ2

∥∥∥∥
∑

i∈I

Γ∗
i fi

∥∥∥∥+ ε

∥∥∥∥
∑

i∈I

|fi|2
∥∥∥∥

1

2

.

Let x ∈ E. For fi = a∗m∗
iψix, we have

∑

i∈I

〈fi, fi〉 = a∗a
∑

i∈I

m∗
imi〈ψix, ψix〉 ≤ ‖a‖2‖m‖2∞

∑

i∈I

〈ψix, ψix〉.
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Because Ψ is a standard g-Bessel sequence, we obtain that {fi}i∈I ∈ ⊕i∈IEi.
Now (3) implies that

∥∥∥∥
∑

i∈I

a∗m∗
iΛ

∗
iψix−

∑

i∈I

a∗m∗
iΓ

∗
iψix

∥∥∥∥

≤ λ1

∥∥∥∥
∑

i∈I

a∗m∗
iΛ

∗
iψix

∥∥∥∥+ λ2

∥∥∥∥
∑

i∈I

a∗m∗
iΓ

∗
iψix

∥∥∥∥+ ε

∥∥∥∥
∑

i∈I

|a∗m∗
iψix|2

∥∥∥∥
1

2

.

Since a∗Mm∗,Λ,Ψ = (aMm,Ψ,Λ)
∗ = IdE and ‖Mm∗,Γ,Ψ‖ ≤ ‖m‖∞

√
CD (see

[24]), we get

‖x− a∗Mm∗,Γ,Ψx‖ ≤ λ1‖x‖+ λ2‖a∗Mm∗,Γ,Ψx‖+ ε‖a‖‖m‖∞
√
D‖x‖

≤
(
λ1 + (‖a‖

√
D‖m‖∞)[ε+ λ2

√
C]

)
‖x‖.

This implies that

‖IdE − a∗Mm∗,Γ,Ψ‖ ≤
(
λ1 + (‖a‖

√
D‖m‖∞)[ε+ λ2

√
C]

)
< 1,

meaning that Γ is an (a∗,m∗)-approximate g-dual of Ψ equivalently (by The-
orem 3.5) Ψ is an (a,m)-approximate g-dual of Γ. �

Corollary 4.6. Let 0 ≤ λ1, λ2 < 1. Suppose that F = {fi}i∈I is a standard
Bessel sequence with upper bound B and N = {hi}i∈I is an (a,m)-dual of F
with upper bound D. If {gi}i∈I is a sequence satisfying

∥∥∥∥
∑

i∈Ω

aifi −
∑

i∈Ω

aigi

∥∥∥∥ ≤ λ1

∥∥∥∥
∑

i∈Ω

aifi

∥∥∥∥+ λ2

∥∥∥∥
∑

i∈Ω

aigi

∥∥∥∥+ ε

∥∥∥∥
∑

i∈Ω

|ai|2
∥∥∥∥

1

2

for each finite subset Ω ⊆ I, {ai}i∈Ω ⊆ A with λ1 + (‖a‖
√
D‖m‖∞)

[
ε +

λ2
[(1+λ1)

√
B+ε]

(1−λ2)

]
< 1, then N is an (a,m)-approximate dual of G.

For a standard g-frame Λ (resp. frame F), we denote its lower bound and
upper bound by AΛ and BΛ (resp. AF and BF), respectively.

The following propositions and corollaries generalize Propositions 4.6, 4.10
and Corollary 4.7 in [35] to (a,m)-approximate duals in Hilbert C∗-modules.

Proposition 4.7. (i) Let Γ be a g-dual of Λ, 0 ≤ λ < 1√
BΛBΓ

and let m be a

symbol such that (1−λ)1A ≤ mi ≤ (1+ λ)1A for each i ∈ I. Then Λ (resp. Γ)
is an (1A,m)-approximate g-dual of Γ (resp. Λ).

(ii) Let G be a dual of F , 0 ≤ λ < 1√
BFBG

and let m be a symbol such

that (1 − λ)1A ≤ mi ≤ (1 + λ)1A for each i ∈ I. Then F (resp. G) is an
(1A,m)-approximate dual of G (resp. F).
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Proof. (i) Because −λ1A ≤ mi − 1A ≤ λ1A, we have ‖mi − 1A‖ ≤ λ for each
i ∈ I and this yields that ‖{mi − 1A}i∈I‖∞ ≤ λ. Let x ∈ E. Then

‖Mm,Γ,Λx− x‖ =

∥∥∥∥
∑

i∈I

miΓ
∗
iΛix−

∑

i∈I

Γ∗
iΛix

∥∥∥∥

≤ ‖{mi − 1A}‖∞
√
BΓBΛ‖x‖ ≤ λ

√
BΓBΛ‖x‖.

This means that Γ is an (1A,m)-approximate g-dual of Λ and since 1A and
mi’s are self-adjoint, by Theorem 3.5, Λ is an (1A,m)-approximate g-dual of Γ.

(ii) The result follows from part (i) and Remark 3.6. �

As we know if Λ is a standard g-frame with lower bound AΛ, then
1
AΛ

is an

upper bound for Λ̃.

Corollary 4.8. (i) Let Λ be a standard g-frame. Suppose that 0 ≤ λ <
√

AΛ

BΛ

and m is a symbol such that (1− λ)1A ≤ mi ≤ (1 + λ)1A for each i ∈ I. Then

Λ (resp. Λ̃) is an (1A,m)-approximate g-dual of Λ̃ (resp. Λ).

(ii) Let F be a standard frame. Suppose that 0 ≤ λ <
√

AF

BF
and m is a

symbol such that (1 − λ)1A ≤ mi ≤ (1 + λ)1A for each i ∈ I. Then F (resp.

F̃) is an (1A,m)-approximate dual of F̃ (resp. F).

Proposition 4.9. Let Γ be a g-dual of Λ. If Ψ = {ψi}i∈I is a g-Bessel sequence
such that there exists λ ∈ [0, 1

BΛ
) with

∥∥∥∥
∑

i∈I

〈(miψi − Γi)x, (miψi − Γi)x〉
∥∥∥∥ ≤ λ‖x‖2

for each x ∈ E, then Λ (resp. Ψ) is an (1A,m) (resp. (1A,m
∗)-)approximate

g-dual of Ψ (resp. Λ).

Proof. For each x ∈ E, we have
∥∥∥Mm,Λ,Ψx− x

∥∥∥ =
∥∥∥
∑

i∈I

Λ∗
i (miψix)−

∑

i∈I

Λ∗
iΓix

∥∥∥ ≤
√
BΛλ‖x‖.

Thus ‖Mm,Λ,Ψ − IdE‖ < 1. This means that Λ is an (1A,m)-approximate
g-dual of Ψ and consequently Ψ is an (1A,m

∗)-approximate g-dual of Λ. �

Corollary 4.10. Let G be a dual of F . If N = {hi}i∈I is a Bessel sequence

such that there exists λ ∈ [0, 1
BF

) with
∥∥∥
∑

i∈I |〈x,mihi − gi〉|2
∥∥∥ ≤ λ‖x‖2 for

each x ∈ E, then N (resp. F) is an (1A,m) (resp. (1A,m
∗)-)approximate dual

of F (resp. N ).

Corollary 4.11. Let Λ = {Λi ∈ L(H,Hi) : i ∈ I} be a g-frame and let
m = {mi}i∈I ⊆ C.
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(i) If Γ = {Γi ∈ L(H,Hi) : i ∈ I} is a g-dual of Λ, 0 ≤ λ < 1√
BΛBΓ

and

(1 − λ) ≤ mi ≤ (1 + λ) for each i ∈ I, then Mm,Λ,Γ and Mm,Γ,Λ are
invertible with

1

1 + λ
√
BΛBΓ

‖x‖ ≤ ‖Mx‖ ≤ 1

1− λ
√
BΛBΓ

‖x‖

for each x ∈ H, where M is Mm,Λ,Γ or Mm,Γ,Λ.

(ii) If 0 ≤ λ <
√

AΛ

BΛ
and (1 − λ) ≤ mi ≤ (1 + λ) for each i ∈ I, then

M
m,Λ,Λ̃ and M

m,Λ̃,Λ are invertible with

1

1 + λ
√

BΛ

AΛ

‖x‖ ≤ ‖Mx‖ ≤ 1

1− λ
√

BΛ

AΛ

for each x ∈ H, where M is M
m,Λ,Λ̃ or M

m,Λ̃,Λ.

(iii) Let Γ be a g-dual of Λ. If Ψ = {ψi ∈ L(H,Hi) : i ∈ I} is a g-Bessel
sequence such that there exists λ ∈ [0, 1

BΛ
) with

∑

i∈I

|(miψi − Γi)x|2 ≤ λ‖x‖2

for each x ∈ H, then Mm,Λ,Ψ and Mm,Ψ,Λ are invertible with

1

1 +
√
λBΛ

‖x‖ ≤ ‖Mx‖ ≤ 1

1−
√
λBΛ

‖x‖

for each x ∈ H, where M is Mm,Λ,Ψ or Mm,Ψ,Λ.

Proof. (i) The result follows from Proposition 4.7. The relation

1

1 + λ
√
BΛBΓ

‖x‖ ≤ ‖Mx‖ ≤ 1

1− λ
√
BΛBΓ

‖x‖,

can be obtained similar to the proof of Proposition 4.6 in [35].

(ii) The result is obtained from (i) using Γ = Λ̃ and BΓ = 1
AΛ

.

(iii) We can get the result from Proposition 4.9 and a similar proof as Propo-
sition 4.10 in [35]. �

Remark 4.12. Note that in the definition of (a,m)-approximate duals, we have
assumed that F and G are Bessel sequences. But (as we see in [36] for Hilbert
spaces) Mm,G,F can be well-defined and adjointable, although F or G is not a
Bessel sequence, so the definition of (a,m)-approximate duals can be presented
for general sequences. We recall from [34] that for a measure space (X,µ), the
pair of mappings (Ψ,Φ), where Ψ,Φ : X −→ H are weakly measurable (H
is a Hilbert space) is called a reproducing pair for H if the operator SΨ,Φ :
H −→ H weakly defined by SΨ,Φf =

∫
X
〈f,Ψ(x)〉Φ(x)dµ(x) is an element

of GL(H) (GL(H) is the set of bounded operators with bounded inverse on
H). Now using the operator SΨ,Φ instead ofMm,Γ,Λ in the definition of (a,m)-
approximate duals, we can generalize the concept of (a,m)-approximate duality
for reproducing pairs. We mention that some sequences related to frame theory
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have been classified in [7]. Similar to the above conclusions, we can generalize
the notion of (a,m)-approximate duality to these sequences.
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