DOI QR코드

DOI QR Code

A Difference of Two Composition Operators on L2 and H2

  • Received : 2013.11.30
  • Accepted : 2014.04.11
  • Published : 2016.03.23

Abstract

A finite rank difference of two composition operators is studied on a Hilbert Lebesgue space or a Hilbert Hardy space.

Keywords

References

  1. E. Berkson, Composition operators isolated in the uniform operator topology, Proc. Amer. Math. Soc., 81(1981), 230-232. https://doi.org/10.1090/S0002-9939-1981-0593463-0
  2. H. Kamowitz, Compact weighted endomorphisms of C(X), Proc. Amer. Math. Soc., 83(1981), 517-521.
  3. B. D. MacCluer, S. Ohno and R. Zhao, Topological structure of the space of composition operators on $H^{\infty}$, Integr. Eq. Op. Th., 40(2001), 481-494. https://doi.org/10.1007/BF01198142
  4. E. A. Nordgren, Composition operators on Hilbert spaces, Hilbert Space Operators, Lecture Notes in Math., 693, Springer-Verlag, Berlin, Heidelberg, and New York, (1978), 37-63.
  5. J. H. Shapino and C. Sundberg, Isolation amongst the composition operators, Pacific. J. Math., 145(1990), 117-152. https://doi.org/10.2140/pjm.1990.145.117
  6. R. K. Singh and R. D. C. Kumar, Compact weighted composition operators on $L^2({\lambda})$, Acta Sci. Math., 49(1985), 339-344.
  7. H. Takagi, Compact weighted composition operators on $L^p$, Proc. Amer. Math. Soc., 116(1992), 505-511.
  8. H. Takagi, Fredholm weighted composition operators, Integr. Equat. Oper. Th., 16(1993), 267-276. https://doi.org/10.1007/BF01358956