• Title/Summary/Keyword: Composite Service

Search Result 415, Processing Time 0.023 seconds

An analytical approach of behavior change for concrete dam by panel data model

  • Gu, Hao;Yang, Meng;Gu, Chongshi;Cao, Wenhan;Huang, Xiaofei;Su, Huaizhi
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.521-531
    • /
    • 2020
  • The behavior variation of concrete dam is investigated, based on a new method for analyzing the data model of concrete dam in service process for the limitation of wavelet transform for solving concrete dam service process model. The study takes into account the time and position of behavior change during the process of concrete dam service. There is no dependence on the effect quantity for overcoming the shortcomings of the traditional identification method. The panel data model is firstly proposed for analyzing the behavior change of composite concrete dam. The change-point theory is used to identify whether the behavior of concrete dams changes during service. The phase space reconstruction technique is used to reconstruct the phase plane of the trend effect component. The time dimension method is used to solve the construction of multi-transformation model of composite panel data. An existing 76.3-m-high dam is used to investigate some key issues on the behavior change. Emphasis is placed on conversion time and location for three time periods consistent with the practical analysis report for evaluating the validity of the analysis method of the behavior variation of concrete dams presented in this paper.

An analytical-numerical procedure for cracking and time-dependent effects in continuous composite beams under service load

  • Chaudhary, Sandeep;Pendharkar, Umesh;Nagpal, A.K.
    • Steel and Composite Structures
    • /
    • v.7 no.3
    • /
    • pp.219-240
    • /
    • 2007
  • An analytical-numerical procedure has been presented in this paper to take into account the nonlinear effects of concrete cracking and time-dependent effects of creep and shrinkage in the concrete portion of the continuous composite beams under service load. The procedure is analytical at the element level and numerical at the structural level. The cracked span length beam element consisting of uncracked zone in middle and cracked zones near the ends has been proposed to reduce the computational effort. The progressive nature of cracking of concrete has been taken into account by division of the time into a number of time intervals. Closed form expressions for stiffness matrix, load vector, crack lengths and mid-span deflection of the beam element have been presented in order to reduce the computational effort and bookkeeping. The procedure has been validated by comparison with the experimental and analytical results reported elsewhere and with FEM. The procedure can be readily extended for the analysis of composite building frames where saving in computational effort would be very considerable.

Active vibration control of smart composite structures in hygrothermal environment

  • Mahato, P.K.;Maiti, D.K.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.127-138
    • /
    • 2012
  • The composite materials may be exposed to environmental (thermal or hygral or both) condition during their service life. The effect of environmental condition is usually adverse from the point of view of design of composite structures. In the present research study the effect of hygrothermal condition on the design of laminated composite structures is investigated. The active fiber composite (AFC) which may be utilized as actuator or sensor is considered in the present analysis. The sensor layer is used to sense the level of response of the composite structures. The sensed voltage is fed back to the actuator through the controller. In this study both displacement and velocity feedback controllers are employed to reduce the response of the composite laminate within acceptable limit. The Newmark direct time integration scheme is employed along with modal superposition method to improve the computational efficiency. It is observed from the numerical study that the laminated composite structures become weak in the presence of hygrothermal load. The response of the structure can be brought to the acceptable level once the AFC layer is activated through the feedback loop.

The Evaluation of the Structural Strength to Check the Basic Design for the Composite Carbody of the Tilting Train (복합재 틸팅열차 차체 구조물의 기본설계 검증을 위한 강도 평가)

  • 신광복;박기진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.203-206
    • /
    • 2003
  • Using composite materials for the carbody of tilting train has many advantages such as manufacturing variety, specific high-strength & stiffness characteristics, and long-life durability, but the strongest advantage could be the possibility of lightweight product. In the leading countries, the composite materials are used for the material fur drivers'cabs, interior/exterior equipments for railway train, and it is now developing the composite materials applied for the train carbody structure. In this paper, we conducted the evaluation of structural stability for the aluminum and composite carbody of the Korean Tilting Train express(TTX) with the service speed of 180km/h.

  • PDF

Theoretical study of UHPCC composite column behaviors under axial compression

  • Wu, Xiang-Guo;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.931-951
    • /
    • 2015
  • To improve the durability and service life of reinforced concrete column such as bridge piers, an advanced composite column made of Ultra High Performance Cementitious Composites (UHPCC) permanent form is proposed. Based on elasticity plasticity theory, axial compression behavior of the composite column was studied theoretically. The first circumferential cracking load and ultimate limit loading capacity are derived for the composite column. Short composite column compression tests and numerical simulations using FEM method were carried out to justify the theoretical formula. The effects of UHPCC tube thickness on the axial compression behavior were studied. Using the established theoretical model and numerical simulation, the large dimension composite columns are calculated and analyzed with different UHPCC tube thickness. These studies may provide a reference for advanced composite column design and application.

A Study on Analysis Method to Evaluate Influence of Damage on Composite Layer in Type3 Composite Cylinder (Type3 복합재료 압력용기의 복합재층 손상에 따른 영향성 평가를 위한 해석기법에 관한 연구)

  • Lee, Kyo-Min;Park, Ji-Sang;Lee, Hak-Gu;Kim, Yeong-Seop
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.7-13
    • /
    • 2010
  • Type3 cylinder is a composite pressure vessel fully over-wrapped with carbon/epoxy composite layers over an aluminum liner, which is the most ideal and safe high pressure gas container for CNG vehicles due to the lightweight and the leakage-before-burst characteristics. During service in CNG vehicle, if a fiber cut damage occurs in outer composite layers, it can degrade structural performance, reducing cycling life from the original design life. In this study, finite element modeling and analysis technique for the composite cylinder with fiber-cut crack damage is presented. Because FE analysis of type3 cylinder is path dependant due to plastic deformation of aluminum liner in autofrettage process, method to introduce a crack into FE model affect analysis result. A crack should be introduced after autofrettage in analysis step considering real circumstances where crack occurs during usage in service. For realistic simulation of this situation, FE modeling and analysis technique introducing a crack in the middle of analysis step is presented and the results are compared with usual FE analysis which has initial crack in the model from the beginning of analysis. Proposed analysis technique can be used effectively in the evaluation of influence of damage on composite layers of type3 cylinder and establish inspection criteria of composite cylinder in service.

Ontology Language based on Topic Maps for Semantic Web Service (시맨틱 웹 서비스를 위한 Topic Maps 기반의 온톨로지 언어)

  • 황윤영;유정연;유소연;이규철
    • Proceedings of the CALSEC Conference
    • /
    • 2003.09a
    • /
    • pp.191-196
    • /
    • 2003
  • The Semantic web service is able to intelligently discover, execute, composite and monitor the Web Service. It constructs the ontology on Web Service and describes the Semantic Markup in the machine-readable form. The currently developing technologies of the Semantic Web Service discovery are DAML-S matchmaker in Carnegie Mellon University, Process Handbook in MIT and etc. In this paper, we propose the ontology language based on Topic Maps that supports the benefits and solves the problems of the Semantic Web Service discovery technologies .

  • PDF

Effect of stud corrosion on stiffness in negative bending moment region of steel-concrete composite beams

  • Yulin Zhan;Wenfeng Huang;Shuoshuo Zhao;Junhu Shao;Dong Shen;Guoqiang Jin
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.59-71
    • /
    • 2023
  • Corrosion of the headed studs shear connectors is an important factor in the reduction of the durability and mechanical properties of the steel-concrete composite structure. In order to study the effect of stud corrosion on the mechanical properties in the negative moment region of steel-concrete composite beams, the corrosion of stud was carried out by accelerating corrosion method with constant current. Static monotonic loading was adopted to evaluate the cracking load, interface slip, mid-span deflection, and ultimate bearing capacity of four composite beams with varying corrosion rates of headed studs. The effect of stud corrosion on the stiffness of the composite beam's hogging moment zone during normal service stage was thoroughly examined. The results indicate that the cracking load decreased by 50% as the corrosion rate of headed studs increase to 10%. Meanwhile, due to the increase of interface slip and mid-span deflection, the bending stiffness dropped significantly with the same load. In comparison to uncorroded specimens, the secant stiffness of specimens with 0.5 times ultimate load was reduced by 25.9%. However, corrosion of shear studs had no obvious effect on ultimate bending capacity. Based on the experimental results and the theory of steel-concrete interface slip, a method was developed to calculate the bending stiffness in the negative bending moment region of composite beams during normal service stage while taking corrosion of headed studs into account. The validity of the calculation method was demonstrated by data analysis.

Design and Implementation of a Contents Recommendation System in Mobile Environments (모바일 환경에서 콘텐츠 추천 시스템 설계 및 구현)

  • Lee, Nak-Gyu;Pi, Jun-Il;Park, Jun-Ho;Bok, Kyoung-Soo;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.12
    • /
    • pp.40-51
    • /
    • 2011
  • The key issues of recommendation systems provide the contents satisfying the interests of users for the huge amounts of contents over internet. The existing recommendation system use the algorithms considering the users' profiles and context information to enhance the exactness of a recommendation. However, the existing recommendation system can't satisfy the requirements of service providers because the business models of service providers is not considered. In this paper, we propose the mobile recommendation system using the composite contexts and the recommendation weights applying the business model of service providers. The proposed system retrieves the contents of the contents providers using composite context information and apply the recommendation weights to recommend the suitable contents for the business models of service providers. Therefore, we provide the contents satisfying the consumption value of users and the business models of service providers to mobile users.

A Study on the Intelligent Service Selection Reasoning for Enhanced User Satisfaction : Appliance to Cloud Computing Service (사용자 만족도 향상을 위한 지능형 서비스 선정 방안에 관한 연구 : 클라우드 컴퓨팅 서비스에의 적용)

  • Shin, Dong Cheon
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.35-51
    • /
    • 2012
  • Cloud computing is internet-based computing where computing resources are offered over the Internet as scalable and on-demand services. In particular, in case a number of various cloud services emerge in accordance with development of internet and mobile technology, to select and provide services with which service users satisfy is one of the important issues. Most of previous works show the limitation in the degree of user satisfaction because they are based on so called concept similarity in relation to user requirements or are lack of versatility of user preferences. This paper presents cloud service selection reasoning which can be applied to the general cloud service environments including a variety of computing resource services, not limited to web services. In relation to the service environments, there are two kinds of services: atomic service and composite service. An atomic service consists of service attributes which represent the characteristics of service such as functionality, performance, or specification. A composite service can be created by composition of atomic services and other composite services. Therefore, a composite service inherits attributes of component services. On the other hand, the main participants in providing with cloud services are service users, service suppliers, and service operators. Service suppliers can register services autonomously or in accordance with the strategic collaboration with service operators. Service users submit request queries including service name and requirements to the service management system. The service management system consists of a query processor for processing user queries, a registration manager for service registration, and a selection engine for service selection reasoning. In order to enhance the degree of user satisfaction, our reasoning stands on basis of the degree of conformance to user requirements of service attributes in terms of functionality, performance, and specification of service attributes, instead of concept similarity as in ontology-based reasoning. For this we introduce so called a service attribute graph (SAG) which is generated by considering the inclusion relationship among instances of a service attribute from several perspectives like functionality, performance, and specification. Hence, SAG is a directed graph which shows the inclusion relationships among attribute instances. Since the degree of conformance is very close to the inclusion relationship, we can say the acceptability of services depends on the closeness of inclusion relationship among corresponding attribute instances. That is, the high closeness implies the high acceptability because the degree of closeness reflects the degree of conformance among attributes instances. The degree of closeness is proportional to the path length between two vertex in SAG. The shorter path length means more close inclusion relationship than longer path length, which implies the higher degree of conformance. In addition to acceptability, in this paper, other user preferences such as priority for attributes and mandatary options are reflected for the variety of user requirements. Furthermore, to consider various types of attribute like character, number, and boolean also helps to support the variety of user requirements. Finally, according to service value to price cloud services are rated and recommended to users. One of the significances of this paper is the first try to present a graph-based selection reasoning unlike other works, while considering various user preferences in relation with service attributes.