• Title/Summary/Keyword: Composite Geosynthetics

Search Result 43, Processing Time 0.021 seconds

A Study on Discharge Capacity of Vertical Drain Considering with In-situ Soil Condition (원지반조건을 고려한 연직배수재의 통수능에 관한 연구)

  • Park, Min-Chul;Kim, Eun-Chul;Lee, Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Discharge capacity of PBD is sensitive in proportion to thickness and ground condition, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity gets larger according to ground condition, construction condition and soil properties. But cause and analysis of those problems like reduced discharge of capacity and delayed dissipation of pore water pressure for discharge capacity is lack. Thus, in this text, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with in-situ ground condition. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. After in-situ ground and reclamation of ground are dredged, load following the loading step of 30, 70 and 120kPa using a pressure device. Result of the test, The discharge capacity was SM>ML>CL>CL(dredged soil) in situ condition and more fine-grained content, the amount of discharge was greater.

Numerical Study on Direct Shear Test of Composite Shotcrete with Sprayable Waterproofing Membrane (차수용 박층 멤브레인의 직접전단실험에 관한 수치해석 연구)

  • Lee, Kicheol;Choi, Soon-Wook;Kim, Dongwook;Lee, Chulho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.189-197
    • /
    • 2018
  • A sprayable waterproofing membrane which has relatively high adhesive property onto concrete enables faster construction with better waterproof performance compared with a conventional sheet membrane. However, the sprayable waterproofing membrane is a recently developed material and its performance and behavior with structures are not sufficiently reported. Therefore, in this study, the shear behavior of sprayable waterproofing membrane was numerically analyzed using the results of previous studies of composite shotcrete with sprayable waterproofing membrane. From the previous study, shear behavior of shotcrete with sprayable waterproofing membrane was different from shotcrete case and there was a limitation to express the behavior of the interface in general shear strength method. Therefore, in this study, the direct shear test was numerically simulated using two contact models, and then the best suitable method to express the shear behavior of the sprayable waterproofing membrane was suggested.

Deformation Analysis of Geosynthetic Reinforced Retaining Wall by Using Temperature Dependent Confined Tension Test Results (온도제어 구속인장시험에 의한 토목섬유 보강토옹벽의 변위해석)

  • 김홍택;방윤경;조용권
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.97-106
    • /
    • 2003
  • In this study, the effect of temperature and soil confining stress on geosyntheic stress-strain properties was quantified by performing the temperature dependent confined tension tests for four types of geosynthetic including woven geotextile, composite, geomembrane and geogrid specimen. Temperature instrumentation on the GRS-retaining wall constructed in Jaechon-shi area was also performed to examine the a seasonal temperature variation of geosynthetic reinforcements in the backfill. Based on the test results, a comparison was made between unconfined and confined moduli far each temperature to quantify the soil confinement and temperature effect on stress-strain properties. And it was also proposed that the simple expressions for the secant moduli of geosynthetics as a function of temperature and confining stress on geosynthetics. As a result of the FDM analysis of GRS-retaining wall, the method of considering the effect of temperature and confining stress on geosynthetic reinforcements when performing the FDM analysis of GRS-retaining wall was proposed.

Experimental Study on Recycled-Aggregate Porous Concrete Pile Method (순환골재 다공질 콘크리트말뚝 공법에 대한 실내모형실험)

  • You, Seung-Kyong;Lee, Chang-Min;Kim, Se-Won;Choi, Hang-Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • The purpose of this research is to assess the application of recycled-aggregate that is gained from construction wastes as the material of compaction pile method. At the same time, the development of the new technique rectifies defects of the existing compaction pile method for soft ground improvement. In this research, laboratory chamber tests were carried out analyzing the effect of the soft ground improvement by porous concrete pile using recycled aggregate. Through the results of the laboratory chamber tests, the variations of settlement, excess pore pressure, and increment of the vertical stress with time and the behavior of the composite ground were elucidated.

  • PDF

Thinning Effect Due to Bentonite Migration on Performance of GCL (벤토나이트 유실로 인한 협착이 GCL 거동에 미치는 영향)

  • Choi, Hangseok;Lee, Chulho;Stark, Timothy D.
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.49-58
    • /
    • 2006
  • Recently, geosynthetic clay liners (GCLs) have increasingly been used to replace compacted clay liners (CCLs) in composite liner systems. Since the introduction of GCLs to waste containment facilities, one of the major concerns about their use has been the hydraulic equivalency to CCLs as required by regulations. Laboratory test results and more recently field observations show that the thickness, or mass per unit area, of hydrated bentonite in a GCL can decrease under normal stress, especially around zones of stress concentration or nonuniform stresses, such as a rock or roughness in the subgrade, a leachate sump, or wrinkles in an overlying geomembrane. This paper presents field case histories that confirm the laboratory observations of bentonite migration and the effect of bentonite migration on hydraulic equivalency and contaminant transport through a GCL.

  • PDF

A Feasibility Study on GMC (Geo-Multicell-Composite) of the Leachate Collection System in Landfill (폐기물 매립시설의 배수층 및 보호층으로서의 Geo-Multicell-Composite(GMC)의 적합성에 관한 연구)

  • Jung, Sung-Hoon;Oh, Seungjin;Oh, Minah;Kim, Joonha;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.67-76
    • /
    • 2013
  • Landfill require special care due to the dangers of nearby surface water and underground water pollution caused by leakage of leachate. The leachate does not leak due to the installation of the geomembrane but sharp wastes or landfill equipment can damage the geomembrane and therefore a means of protecting the geomembrane is required. In Korea, in accordance with the waste control act being modified in 1999, protecting the geosynthetics liner on top of the slope of landfill and installing a drainage layer to fluently drain leachate became mandatory, and technologies are being researched to both protect the geomembrane and quickly drain leachate simultaneously. Therefore, this research has its purpose in studying the drainage functions of leachate and protection functions of the geomembrane in order to examine the application possibilities of Geo-Multicell-Composite (GMC) as a Leachate Collection Removal and Protection System (LCRPs) at the slope on top of the geomembrane of landfill by observing methods of inserting filler with high-quality water permeability at the drainage net. GMC's horizontal permeability coefficient is $8.0{\times}10^{-4}m^2/s$ to legal standards satisfeid. Also crash gravel used as filler respected by vertical permeability is 5.0 cm/s, embroidering puncture strength 140.2 kgf. A result of storm drain using artificial rain in GMC model facility, maxinum flow rate of 1,120 L/hr even spray without surface runoff was about 92~97% penetration. Further study, instead of crash gravel used as a filler, such as using recycled aggregate utilization increases and the resulting construction cost is expected to savings.

The Behavior on Stress and Settlement of GCP Composite Ground with Different Shear Strength of Soil (GCP로 개량된 복합지반의 지반강도 별 응력 및 침하거동)

  • Na, Seung-Ju;Kim, Daehyeon;Kim, Gyeong-Eop
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.3
    • /
    • pp.63-74
    • /
    • 2017
  • Although the Granular Compaction Pile (GCP) has been used for many decades, several failures still occur such as bulging, shear failure and other phenomena, indicating that more refined study is needed. The main objective of the study is to evaluate the stress concentration ratio for both area replacement ratio and shear strength of soil through literature review and numerical analysis. Numerical analysis using the finite element program ABAQUS has been performed for the composite ground with GCP. The behavior stress and settlement of composite ground have been analyzed for both the area replacement ratio (10~40%) and shear strength of soil (25~75 kPa). As a result of numerical analysis, as the soil strength and area replacement ratio increased, the average stree related coefficient and stress concentration ratio for depth tended to decrease, and stress related coefficient of upper layer tend to decrease equally, but the stress concentration ratio decreased. Therefore, tendency that the value in th upper layer differs from the value in other depths was displayed. Care should be taken because it is possible to make mistakes in designing the entire composite ground with the values measured in the upper layer. Also, the settlement reduction factor was compared with the existing equation and numerical analysis. And the value obatined from the existing equation and numerical analysis are similar.

Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions (하중 및 기초조건에 따른 GCP 복합지반의 거동분석)

  • Kim, Gyeong-Eop;Park, Kyung-Ho;Kim, Dae-Hyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.127-137
    • /
    • 2018
  • Gravel Compaction Pile (hereinafter referred to as GCP) is a ground improvement technique by packing crushed stones on fragile clay ground, pressing it, and forming stakes on the foundation. Although many researchers have analyzed stress behavior of GCP composite ground on domestic GCP technique using laboratory experiment and field experiment, analyses of stress behavior according to the difference of stiffness of mat foundation loaded on the upper foundation of GCP composite ground have not been done actively. Therefore, this study aimed to identify the stress concentration ratio in accordance with the difference of basis stiffness by interpreting figures. To perform this, replacement ratio was changed and modelled using ABAQUS, software for finite element analysis and analyzed the stress concentration ratio, amounts of settlement, and maximum amounts of horizontal displacement of composite ground in accordance with the difference of stiffness. An analysis showed that the stress concentration ratio of rigid foundation was highly assessed than unloading of flexible foundation in case of unloading, while amounts of settlement under flexible unloading condition were slightly higher than under rigid condition. This indicates that the characteristic of stress behavior on the different stiffness of upper foundation needs to be clarified. In addition, the maximum horizontal displacement was generated in a constant level regardless of the difference of stiffness.

A Fundamental Study on Behavior Characteristics of the Geosynthetic Composite Reinforcement in the Weathered Granite Backfill Soils (화강풍화토 뒤채움흙 내부 토목섬유 복합보강재의 거동특성에 관한 기초연구)

  • 김홍택;김승욱;전한용;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.171-191
    • /
    • 1999
  • The final aim of this research is to systematize the reinforced-earth wall system using the geosynthetic composite reinforcement in the weathered granite backfill soils having relatively large amount of fines. As a staged endeavour to accomplish this purpose, laboratory pull-out tests and finite element modeling are carried out in the present study focusing on the analyses of friction characteristics associated with interaction behaviors of the geosynthetic composite reinforcement composed of geogrid with a superior function in tensile resistance and geotextile with sufficient drainage effects. In addition, drainage effects of the geotextile below geogrid are examined based on the analysis of finite difference numerical modeling. From the present investigation, it is concluded that the geosynthetic composite reinforcement in the weathered granite backfills may possibly be used to achieve effects on both a reduction of deformations and an increase of the tensile resistance, together with drainage effects resulting from the geotextile.

  • PDF

Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground (GCP 복합지반의 거동분석을 위한 유한요소해석)

  • Kim, Gyeong-eop;Park, Kyung-Ho;Kim, Ho-Yeon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.19-32
    • /
    • 2018
  • Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.