• 제목/요약/키워드: Complex training

검색결과 589건 처리시간 0.029초

상두선(象頭山) 바위글씨의 특징과 경관의미 (The Characteristics and Landscape Meanings of Letters Carved on the Rocks of Mt. Sangdu)

  • 노재현;이정한;허준;김정문
    • 한국전통조경학회지
    • /
    • 제30권2호
    • /
    • pp.1-13
    • /
    • 2012
  • 본 연구는 전라북도 정읍시와 김제시의 경계에 위치해 있는 상두산 일대 바위글씨의 형식과 내용을 검토하고, 바위글씨가 새겨진 공간의 특성을 파악함으로써 바위글씨의 경관적 의미와 가치를 구명하고자 하였다. 상두산(象頭山, 575.3m)은 석가모니가 수행하던 인도의 동명(同名)산에서 유래한 명칭이며, 이때, '상두(象頭)'는 상서로움을 의미한다. 조선시대의 고지도와 문헌에서는 풍수도참과 관련된 다수의 명당개념이 전해지고 있어 상두산의 상서로운 이미지를 견고히 하는 요인이 되고 있다. 상두산에는 총 4개 수계에 한자로 새겨진 41개의 바위글씨가 존재하는데 바위글씨의 입지는 주로 계곡상 평석 형태의 너럭바위 또는 낙폭이 1m미만인 소폭(小瀑)과 와폭(臥瀑)주변에 새겨져 있는 특징을 보인다. 서체는 전서(篆書)를 비롯한 행서(行書)와 초서(草書)등 다양한 형태를 보이고 있는데, 일부는 각자인(刻字人)의 성명과 집자(集子)한 바위글씨의 서체가 하나의 작품처럼 인식될 정도로 높은 완성도와 예술성을 갖춘 것으로 파악된다. 바위글씨를 새기는데 주도적인 역할을 한 인물은 동초(東樵) 김석곤(金晳坤)을 비롯한 청계시회(淸溪詩會) 회원과 후암(厚庵) 김창석(金昌碩), 월계(月溪) 송영조(宋榮祚) 등으로 이들이 새긴 바위글씨는 조선시대 선비의 덕목인 수신(修身)과 관련된 내용이 25건으로, 비록 일제강점기이나 선비로서의 자존(自存)을 지키고자 하였음을 보여주며 또 일부는 '물외(物外)에서 노니는 탈속(脫俗)의 경지'를 보여주는 내용으로 일제강점기하 선비와 식민지인으로서의 갈등을 표상(表象)한다. 이처럼 상두산 바위글씨는 단지 물리적인 형태뿐만 아니라 민족성을 고취시키는 내용이자 경관상징성을 배가시키는 문화경관 요소로써의 보존적 가치가 크다고 사료된다.

ERP 도입 전 구성원의 저항 (A Study on Users' Resistance toward ERP in the Pre-adoption Context)

  • 박재성;조용수;고준
    • Asia pacific journal of information systems
    • /
    • 제19권4호
    • /
    • pp.77-100
    • /
    • 2009
  • Information Systems (IS) is an essential tool for any organizations. The last decade has seen an increasing body of knowledge on IS usage. Yet, IS often fails because of its misuse or non-use. In general, decisions regarding the selection of a system, which involve the evaluation of many IS vendors and an enormous initial investment, are made not through the consensus of employees but through the top-down decision making by top managers. In situations where the selected system does not satisfy the needs of the employees, the forced use of the selected IS will only result in their resistance to it. Many organizations have been either integrating dispersed legacy systems such as archipelago or adopting a new ERP (Enterprise Resource Planning) system to enhance employee efficiency. This study examines user resistance prior to the adoption of the selected IS or ERP system. As such, this study identifies the importance of managing organizational resistance that may appear in the pre-adoption context of an integrated IS or ERP system, explores key factors influencing user resistance, and investigates how prior experience with other integrated IS or ERP systems may change the relationship between the affecting factors and user resistance. This study focuses on organizational members' resistance and the affecting factors in the pre-adoption context of an integrated IS or ERP system rather than in the context of an ERP adoption itself or ERP post-adoption. Based on prior literature, this study proposes a research model that considers six key variables, including perceived benefit, system complexity, fitness with existing tasks, attitude toward change, the psychological reactance trait, and perceived IT competence. They are considered as independent variables affecting user resistance toward an integrated IS or ERP system. This study also introduces the concept of prior experience (i.e., whether a user has prior experience with an integrated IS or ERP system) as a moderating variable to examine the impact of perceived benefit and attitude toward change in user resistance. As such, we propose eight hypotheses with respect to the model. For the empirical validation of the hypotheses, we developed relevant instruments for each research variable based on prior literature and surveyed 95 professional researchers and the administrative staff of the Korea Photonics Technology Institute (KOPTI). We examined the organizational characteristics of KOPTI, the reasons behind their adoption of an ERP system, process changes caused by the introduction of the system, and employees' resistance/attitude toward the system at the time of the introduction. The results of the multiple regression analysis suggest that, among the six variables, perceived benefit, complexity, attitude toward change, and the psychological reactance trait significantly influence user resistance. These results further suggest that top management should manage the psychological states of their employees in order to minimize their resistance to the forced IS, even in the new system pre-adoption context. In addition, the moderating variable-prior experience was found to change the strength of the relationship between attitude toward change and system resistance. That is, the effect of attitude toward change in user resistance was significantly stronger in those with prior experience than those with no prior experience. This result implies that those with prior experience should be identified and provided with some type of attitude training or change management programs to minimize their resistance to the adoption of a system. This study contributes to the IS field by providing practical implications for IS practitioners. This study identifies system resistance stimuli of users, focusing on the pre-adoption context in a forced ERP system environment. We have empirically validated the proposed research model by examining several significant factors affecting user resistance against the adoption of an ERP system. In particular, we find a clear and significant role of the moderating variable, prior ERP usage experience, in the relationship between the affecting factors and user resistance. The results of the study suggest the importance of appropriately managing the factors that affect user resistance in organizations that plan to introduce a new ERP system or integrate legacy systems. Moreover, this study offers to practitioners several specific strategies (in particular, the categorization of users by their prior usage experience) for alleviating the resistant behaviors of users in the process of the ERP adoption before a system becomes available to them. Despite the valuable contributions of this study, there are also some limitations which will be discussed in this paper to make the study more complete and consistent.

지식베이스 구축을 위한 한국어 위키피디아의 학습 기반 지식추출 방법론 및 플랫폼 연구 (Knowledge Extraction Methodology and Framework from Wikipedia Articles for Construction of Knowledge-Base)

  • 김재헌;이명진
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.43-61
    • /
    • 2019
  • 최근 4차 산업혁명과 함께 인공지능 기술에 대한 연구가 활발히 진행되고 있으며, 이전의 그 어느 때보다도 기술의 발전이 빠르게 진행되고 있는 추세이다. 이러한 인공지능 환경에서 양질의 지식베이스는 인공지능 기술의 향상 및 사용자 경험을 높이기 위한 기반 기술로써 중요한 역할을 하고 있다. 특히 최근에는 인공지능 스피커를 통한 질의응답과 같은 서비스의 기반 지식으로 활용되고 있다. 하지만 지식베이스를 구축하는 것은 사람의 많은 노력을 요하며, 이로 인해 지식을 구축하는데 많은 시간과 비용이 소모된다. 이러한 문제를 해결하기 위해 본 연구에서는 기계학습을 이용하여 지식베이스의 구조에 따라 학습을 수행하고, 이를 통해 자연어 문서로부터 지식을 추출하여 지식화하는 방법에 대해 제안하고자 한다. 이러한 방법의 적절성을 보이기 위해 DBpedia 온톨로지의 구조를 기반으로 학습을 수행하여 지식을 구축할 것이다. 즉, DBpedia의 온톨로지 구조에 따라 위키피디아 문서에 기술되어 있는 인포박스를 이용하여 학습을 수행하고 이를 바탕으로 자연어 텍스트로부터 지식을 추출하여 온톨로지화하기 위한 방법론을 제안하고자 한다. 학습을 바탕으로 지식을 추출하기 위한 과정은 문서 분류, 적합 문장 분류, 그리고 지식 추출 및 지식베이스 변환의 과정으로 이루어진다. 이와 같은 방법론에 따라 실제 지식 추출을 위한 플랫폼을 구축하였으며, 실험을 통해 본 연구에서 제안하고자 하는 방법론이 지식을 확장하는데 있어 유용하게 활용될 수 있음을 증명하였다. 이러한 방법을 통해 구축된 지식은 향후 지식베이스를 기반으로 한 인공지능을 위해 활용될 수 있을 것으로 판단된다.

BERTopic을 활용한 불면증 소셜 데이터 토픽 모델링 및 불면증 경향 문헌 딥러닝 자동분류 모델 구축 (Topic Modeling Insomnia Social Media Corpus using BERTopic and Building Automatic Deep Learning Classification Model)

  • 고영수;이수빈;차민정;김성덕;이주희;한지영;송민
    • 정보관리학회지
    • /
    • 제39권2호
    • /
    • pp.111-129
    • /
    • 2022
  • 불면증은 최근 5년 새 환자가 20% 이상 증가하고 있는 현대 사회의 만성적인 질병이다. 수면이 부족할 경우 나타나는 개인 및 사회적 문제가 심각하고 불면증의 유발 요인이 복합적으로 작용하고 있어서 진단 및 치료가 중요한 질환이다. 본 연구는 자유롭게 의견을 표출하는 소셜 미디어 'Reddit'의 불면증 커뮤니티인 'insomnia'를 대상으로 5,699개의 데이터를 수집하였고 이를 국제수면장애분류 ICSD-3 기준과 정신의학과 전문의의 자문을 받은 가이드라인을 바탕으로 불면증 경향 문헌과 비경향 문헌으로 태깅하여 불면증 말뭉치를 구축하였다. 구축된 불면증 말뭉치를 학습데이터로 하여 5개의 딥러닝 언어모델(BERT, RoBERTa, ALBERT, ELECTRA, XLNet)을 훈련시켰고 성능 평가 결과 RoBERTa가 정확도, 정밀도, 재현율, F1점수에서 가장 높은 성능을 보였다. 불면증 소셜 데이터를 심층적으로 분석하기 위해 기존에 많이 사용되었던 LDA의 약점을 보완하며 새롭게 등장한 BERTopic 방법을 사용하여 토픽 모델링을 진행하였다. 계층적 클러스터링 분석 결과 8개의 주제군('부정적 감정', '조언 및 도움과 감사', '불면증 관련 질병', '수면제', '운동 및 식습관', '신체적 특징', '활동적 특징', '환경적 특징')을 확인할 수 있었다. 이용자들은 불면증 커뮤니티에서 부정 감정을 표현하고 도움과 조언을 구하는 모습을 보였다. 또한, 불면증과 관련된 질병들을 언급하고 수면제 사용에 대한 담론을 나누며 운동 및 식습관에 관한 관심을 표현하고 있었다. 발견된 불면증 관련 특징으로는 호흡, 임신, 심장 등의 신체적 특징과 좀비, 수면 경련, 그로기상태 등의 활동적 특징, 햇빛, 담요, 온도, 낮잠 등의 환경적 특징이 확인되었다.

4차 산업혁명시대에 운동재활분야의 융·복합적 활성화 방안 (A Convergent and Combined Activation Plan for Exercise Rehabilitation in the Era of the Fourth Industrial Revolution)

  • 조경환
    • 한국엔터테인먼트산업학회논문지
    • /
    • 제14권8호
    • /
    • pp.407-426
    • /
    • 2020
  • 본 연구는 4차 산업혁명에 따른 뉴노멀 시대에 스포츠산업 현장의 융·복합 분석, 운동재활분야에서의 융·복합적 분석을 통해 미래 활성화 방안을 종합적으로 모색하데 목적이 있다. 이러한 목적을 수행하기 위하여 문헌연구방법을 진행하였으며, 이를 위한 주요 연구 내용으로는 4차 산업혁명에 따른 뉴노멀시대에 스포츠산업 환경을 분석하고 스포츠산업의 융·복합 분석, 그리고 운동재활분야의 융·복합적활성화 방안을 종합적으로 다음과 같이 제시하였다. 첫째, 스포츠산업 차원에서 운동재활분야의 융·복합적 육성 전략을 수립한다. 이는 보건 및 체육부문 등 정부부처간의 협업을 통해 운동재활-ICT 융·복합 모델뿐만 아니라 운동재활-관광-ICT 융·복합 모델 개발과 적극적인 재정 지원을 의미한다. 둘째, 융·복합적인 사고방식으로의 전환과 함께 이를 위한 운동재활분야의 교육경쟁력을 확대, 강화한다. 운동재활 및 관련 전공자 개인의 ICT 역량 강화를 위한 교육·훈련 체계 정비 그리고 융·복합 창업교육 등이 필요함을 의미한다. 셋째, 운동재활 및 관련 분야에 실용적이고 산업 현장 중심의 융·복합 기술 적용을 통한 다양한 연구개발이 요구된다. 이를 통해 뉴노멀시대에 따른 위기 극복과 함께 운동재활 융복·합 기술 창업에 대한 지원도 함께 이루어져야 할 것이다. 넷째, 운동재활 및 관련 상업 집적이 가능한 중장기적 클러스터를 구성한다. 이는 운동재활분야의 산업 거점 및 단지 조성을 의미하며, 산·학·관 협동의 R&D 중심의 클러스터 조성, 지역 인프라와의 시너지 효과의 극대화, 자생적 수익 발생 구조 현실화의 기능을 수행해야 할 것이다.

복합 적층판의 딥러닝 기반 파괴 모드 결정 (Deep Learning-based Fracture Mode Determination in Composite Laminates)

  • 무하마드 무자밀 아자드;아타 우르 레만 샤;M.N. 프라브하카르;김흥수
    • 한국전산구조공학회논문집
    • /
    • 제37권4호
    • /
    • pp.225-232
    • /
    • 2024
  • 본 논문에서는 딥러닝을 활용하여 복합재 적층판의 파괴 모드를 결정하는 방법을 제안하였다. 수많은 엔지니어링 응용 분야에서 적층 복합재의 사용이 증가함에 따라 무결성과 성능을 보장하는 것이 중요해졌다. 그러나 재료의 이방성으로 인해 복잡하게 나타나는 파괴모드를 식별하는 것은 도메인 지식이 필요하고, 시간이 많이 드는 작업이다. 따라서 이러한 문제를 해결하기 위해 본 연구에서는 인공 지능(AI) 기술을 활용하여 적층 복합재의 파괴 모드 분석을 자동화하는 것을 목표로 하였다. 이 목표를 달성하기 위해 적층된 복합재에서 파손된 인장 시험편의 주사 전자 현미경(SEM) 이미지를 얻어 다양한 파괴 모드를 확보하였다. 이러한 SEM 이미지는 섬유 파손, 섬유 풀아웃, 혼합 모드 파괴, 매트릭스 취성 파손 및 매트릭스 연성 파손과 같은 다양한 파손 모드를 기준으로 분류하였다. 다음으로 모든 클래스의 집합 데이터를 학습, 테스트, 검증 데이터 세트로 구분하였다. 두 가지 딥 러닝 기반 사전 훈련 모델인 DenseNet과 GoogleNet을 이용해 각 파괴 모드에 대한 차별적 특징을 학습하도록 훈련하였다. DenseNet 및 GoogleNet 모델은 각각 (94.01% 및 75.49%) 및 (84.55% 및 54.48%)의 훈련 및 테스트 정확도를 보여주었다. 그런 다음 훈련된 딥 러닝 모델은 검증 데이터 세트를 활용해 검증하였다. 더 깊은 아키텍처로 인해 DenseNet 모델이 고품질 특징을 추출하여 84.44% 검증 정확도(GoogleNet 모델보다 36.84% 더 높음)를 얻을 수 있음을 확인하였다. 이는 DenseNet 모델이 높은 정밀도로 파괴 모드를 예측함으로써 적층 복합재의 파손 분석을 수행하는 데 효과적이라는 것을 알 수 있다.

로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식 (Accelerometer-based Gesture Recognition for Robot Interface)

  • 장민수;조용석;김재홍;손주찬
    • 지능정보연구
    • /
    • 제17권1호
    • /
    • pp.53-69
    • /
    • 2011
  • 로봇 자체 또는 로봇에 탑재된 콘텐츠와의 상호작용을 위해 일반적으로 영상 또는 음성 인식 기술이 사용된다. 그러나 영상 음성인식 기술은 아직까지 기술 및 환경 측면에서 해결해야 할 어려움이 존재하며, 실적용을 위해서는 사용자의 협조가 필요한 경우가 많다. 이로 인해 로봇과의 상호작용은 터치스크린 인터페이스를 중심으로 개발되고 있다. 향후 로봇 서비스의 확대 및 다양화를 위해서는 이들 영상 음성 중심의 기존 기술 외에 상호보완적으로 활용이 가능한 인터페이스 기술의 개발이 필요하다. 본 논문에서는 로봇 인터페이스 활용을 위한 가속도 센서 기반의 제스처 인식 기술의 개발에 대해 소개한다. 본 논문에서는 비교적 어려운 문제인 26개의 영문 알파벳 인식을 기준으로 성능을 평가하고 개발된 기술이 로봇에 적용된 사례를 제시하였다. 향후 가속도 센서가 포함된 다양한 장치들이 개발되고 이들이 로봇의 인터페이스로 사용될 때 현재 터치스크린 중심으로 된 로봇의 인터페이스 및 콘텐츠가 다양한 형태로 확장이 가능할 것으로 기대한다.

Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지 (Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone)

  • 하으뜸;김정민;류광렬
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.123-132
    • /
    • 2013
  • 최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.