DOI QR코드

DOI QR Code

Ensemble of Nested Dichotomies for Activity Recognition Using Accelerometer Data on Smartphone

Ensemble of Nested Dichotomies 기법을 이용한 스마트폰 가속도 센서 데이터 기반의 동작 인지

  • Ha, Eu Tteum (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Jeongmin (Department of Electrical and Computer Engineering, Pusan National University) ;
  • Ryu, Kwang Ryel (Department of Electrical and Computer Engineering, Pusan National University)
  • 하으뜸 (부산대학교 전자전기컴퓨터공학과) ;
  • 김정민 (부산대학교 전자전기컴퓨터공학과) ;
  • 류광렬 (부산대학교 전자전기컴퓨터공학과)
  • Received : 2013.12.09
  • Accepted : 2013.12.23
  • Published : 2013.12.31

Abstract

As the smartphones are equipped with various sensors such as the accelerometer, GPS, gravity sensor, gyros, ambient light sensor, proximity sensor, and so on, there have been many research works on making use of these sensors to create valuable applications. Human activity recognition is one such application that is motivated by various welfare applications such as the support for the elderly, measurement of calorie consumption, analysis of lifestyles, analysis of exercise patterns, and so on. One of the challenges faced when using the smartphone sensors for activity recognition is that the number of sensors used should be minimized to save the battery power. When the number of sensors used are restricted, it is difficult to realize a highly accurate activity recognizer or a classifier because it is hard to distinguish between subtly different activities relying on only limited information. The difficulty gets especially severe when the number of different activity classes to be distinguished is very large. In this paper, we show that a fairly accurate classifier can be built that can distinguish ten different activities by using only a single sensor data, i.e., the smartphone accelerometer data. The approach that we take to dealing with this ten-class problem is to use the ensemble of nested dichotomy (END) method that transforms a multi-class problem into multiple two-class problems. END builds a committee of binary classifiers in a nested fashion using a binary tree. At the root of the binary tree, the set of all the classes are split into two subsets of classes by using a binary classifier. At a child node of the tree, a subset of classes is again split into two smaller subsets by using another binary classifier. Continuing in this way, we can obtain a binary tree where each leaf node contains a single class. This binary tree can be viewed as a nested dichotomy that can make multi-class predictions. Depending on how a set of classes are split into two subsets at each node, the final tree that we obtain can be different. Since there can be some classes that are correlated, a particular tree may perform better than the others. However, we can hardly identify the best tree without deep domain knowledge. The END method copes with this problem by building multiple dichotomy trees randomly during learning, and then combining the predictions made by each tree during classification. The END method is generally known to perform well even when the base learner is unable to model complex decision boundaries As the base classifier at each node of the dichotomy, we have used another ensemble classifier called the random forest. A random forest is built by repeatedly generating a decision tree each time with a different random subset of features using a bootstrap sample. By combining bagging with random feature subset selection, a random forest enjoys the advantage of having more diverse ensemble members than a simple bagging. As an overall result, our ensemble of nested dichotomy can actually be seen as a committee of committees of decision trees that can deal with a multi-class problem with high accuracy. The ten classes of activities that we distinguish in this paper are 'Sitting', 'Standing', 'Walking', 'Running', 'Walking Uphill', 'Walking Downhill', 'Running Uphill', 'Running Downhill', 'Falling', and 'Hobbling'. The features used for classifying these activities include not only the magnitude of acceleration vector at each time point but also the maximum, the minimum, and the standard deviation of vector magnitude within a time window of the last 2 seconds, etc. For experiments to compare the performance of END with those of other methods, the accelerometer data has been collected at every 0.1 second for 2 minutes for each activity from 5 volunteers. Among these 5,900 ($=5{\times}(60{\times}2-2)/0.1$) data collected for each activity (the data for the first 2 seconds are trashed because they do not have time window data), 4,700 have been used for training and the rest for testing. Although 'Walking Uphill' is often confused with some other similar activities, END has been found to classify all of the ten activities with a fairly high accuracy of 98.4%. On the other hand, the accuracies achieved by a decision tree, a k-nearest neighbor, and a one-versus-rest support vector machine have been observed as 97.6%, 96.5%, and 97.6%, respectively.

최근 스마트 폰에 다양한 센서를 내장할 수 있게 되었고 스마트폰에 내장된 센서를 이용항 동작 인지에 관한 연구가 활발히 진행되고 있다. 스마트폰을 이용한 동작 인지는 노인 복지 지원이나 운동량 측정. 생활 패턴 분석, 운동 패턴 분석 등 다양한 분야에 활용될 수 있다. 하지만 스마트 폰에 내장된 센서를 이용하여 동작 인지를 하는 방법은 사용되는 센서의 수에 따라 단일 센서를 이용한 동작인지와 다중 센서를 이용한 동작인지로 나눌 수 있다. 단일 센서를 이용하는 경우 대부분 가속도 센서를 이용하기 때문에 배터리 부담은 줄지만 다양한 동작을 인지할 때에 특징(feature) 추출의 어려움과 동작 인지 정확도가 낮다는 문제점이 있다. 그리고 다중 센서를 이용하는 경우 대부분 가속도 센서와 중력센서를 사용하고 필요에 따라 다른 센서를 추가하여 동작인지를 수행하며 다양한 동작을 보다 높은 정확도로 인지할 수 있지만 다수의 센서를 사용하기 때문에 배터리 부담이 증가한다는 문제점이 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 스마트 폰에 내장된 가속도 센서를 이용하여 다양한 동작을 높은 정확도로 인지하는 방법을 제안한다. 서로 다른 10가지의 동작을 높을 정확도로 인지하기 위해 원시 데이터로부터 17가지 특징을 추출하고 각 동작을 분류하기 위해 Ensemble of Nested Dichotomies 분류기를 사용하였다. Ensemble of Nested Dichotomies 분류기는 다중 클래스 문제를 다수의 이진 분류 문제로 변형하여 다중 클래스 문제를 해결하는 방법으로 서로 다른 Nested Dichotomy 분류기의 분류 결과를 통해 다중 클래스 문제를 해결하는 기법이다. Nested Dichotomy 분류기 학습에는 Random Forest 분류기를 사용하였다. 성능 평가를 위해 Decision Tree, k-Nearest Neighbors, Support Vector Machine과 비교 실험을 한 결과 Ensemble of Nested Dichotomies 분류기를 사용하여 동작 인지를 수행하는 것이 가장 높은 정확도를 보였다.

Keywords

References

  1. Anguita, D., A. Ghio, L. Oneto, X. Parra and J. L. Reyes-Ortiz, "Human activity recognition on smartphones using a multiclass hardwarefriendly support vector machine," Proceeding IWAAL'12 Proceedings of the 4th international conference on Ambient Assisted Living and Home Care, (2012), 216-223.
  2. Ataya, A. and P. Jallon, "Amelioration of physical activity estimation from accelerometer sensors using prior knowledge," Signal Processing Conference(EUSIPCO), 2012 Proceedings of the 20th European, (2012), 954-958.
  3. Cho, J. H., J. T. Kim and T. S. Kim, "Smart Phone-based Human Activity Classification and Energy Expenditure Generation in Building Environments," SHB2012-7th International Symposium on Sustainable Healthy Buildings, (2012), 97-105.
  4. Frank, E. and S. Kramer, "Ensembles of nested dichotomies for multiclass problems," Proceeding ICML '04 Proceedings of the twenty-first international conference on Machine learning, (2004), 39-46.
  5. Kose, M., O. Incel and C. Ersoy, "Online Human Activity Recognition on Smart Phones," In Workshop on Mobile Sensing: From Smartphones and Wearables to Big Data, (2012), 11-15.
  6. Russell, S. J. and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd edtion, Prentice Hall, Englewood Cliffs, New Jersey, 2010.

Cited by

  1. Smarter Classification for Imbalanced Data Set and Its Application to Patent Evaluation vol.20, pp.1, 2014, https://doi.org/10.13088/jiis.2014.20.1.015
  2. Safety Helmet Wearing Management System for Construction Workers Using Three-Axis Accelerometer Sensor vol.8, pp.12, 2013, https://doi.org/10.3390/app8122400