• Title/Summary/Keyword: Complex Loading

Search Result 526, Processing Time 0.025 seconds

A Study on the Flexural Damage of RC Beams Under Fatigue Loading Using A Cyclic Creep Characteristics (반복크리프 특성을 이용한 피로하중을 받는 RC 보의 휨손상 연구)

  • 오병환;김동욱;홍경옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.365-370
    • /
    • 1998
  • The creep strain of the compression zone of concrete beams subjected to cyclic loading should be a significant factor in increasing strain and deflections. An analytical model which is similar to a previous one is presented to predict the increase in cyclic creep strain and the damage using the properties of the constituent materials: concrete and steel. The analytical expressions are compared with our experimental data. The effect of concrete-creep is accounted by the term En, Icr,n, and Mcr,n. In this study, it is proved that cyclic creep exponents 'n' in Cyclic Creep Model, according to the parameters -strength, range of stress- have the various values. It is hoped that with the availability of more experimental data and better understanding of some of the complex behavior, the model could be further improved.

  • PDF

Effect of Stress Ratio on Fatigue Crack Growth in Mixed Mode(I+II) (혼합모드(I+II)에서 피로균열진전에 미치는 응력비의 영향)

  • Gong, Byeong-Chae;Choi, Myoung-Su;Kwon, Hyun-Kyu;Choi, Seong-Dae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.4
    • /
    • pp.90-96
    • /
    • 2009
  • The loading condition of actual construction works is complex. The shear effect of mixed-mode load component are crack propagation mechanism in step larger than the crack initial mechanism. Therefore, in this study received a mixed-mode loading on fatigue crack stress ratio on crack propagation path and speed of progress to learn whether stress affects crack propagation. ${\Delta}$ P a constant state of fatigue tests in Mode I, II give the same stress ratio, frequency 10Hz, sinusoidal waveform was used. A lower stress ratio fatigue crack propagation angle is small. This is less affected by the Mode II. Therefore, a mixed-mode fatigue crack propagation is to progress by the Mode. Stress ratio in a mixed mode crack in the path of progress and found a lot of impact.

  • PDF

An Equivalent Truss Model by Discretizing Continuum Structure (연속체의 이산화에 의한 등가트러스모델 개발)

  • Lee, Sung-Yong;Kim, Tae-Gon;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.3
    • /
    • pp.45-52
    • /
    • 2009
  • Generally, structures are analyzed as continuum. However, sometimes it is more efficient to analyze structure as a discrete model rather than as a continuum model in case of the structure has complex shape or loading condition. This study, therefore, suggests an improved analysis discrete model, named Equivalent Truss Model (further as "ETM"), which can obtain similar results with analyzing continuums analysis. ETM adopts a lattice truss to compose the members of the model, and analyses the structures. As a consequence, the ETM produced the identical outcome with the continuums analysis in section force of different structures and loading conditions. Similar results have been shown in internal stress analysis as well. Make use of that ETM is discrete, fractural path of beam was analyzed by ETM and the result was reasonable.

Visualization of Coolant Flow in the Cylinder Read and Exhaust Valve Bridge for the Countermeasure of Thermal Loading in the DOHC Gasoline Engine (DOHC 가솔린기관의 열부하대책을 위한 실린더헤드 및 국소 배기밸브 브릿지부의 냉각수 유동해석)

  • 위신환;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.1-10
    • /
    • 2002
  • As the preliminary stage for the countermeasure of thermal loading in miller cycle engine, coolant flows in the cylinder head of base engine including exhaust valve bridge were visualized and analyzed by using PIV technique. It was found that low coolant velocity regions were around exhaust valve bridge, around which stagnation of the coolant flow was observed due to the complex geometry configuration of water jacket. And velocity variation between each cylinder was remarkable. For the countermeasure of these, it is necessary to enhance coolant flow around exhaust valve bridge and to improve the deviation of coolant flow between each cylinder.

Modeling of reinforced concrete structural members for engineering purposes

  • Mazars, Jacky;Grange, Stephane
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.683-701
    • /
    • 2015
  • When approached using nonlinear finite element (FE) techniques, structural analyses generate, for real RC structures, large complex numerical problems. Damage is a major part of concrete behavior, and the discretization technique is critical to limiting the size of the problem. Based on previous work, the ${\mu}$ damage model has been designed to activate the various damage effects correlated with monotonic and cyclic loading, including unilateral effects. Assumptions are formulated to simplify constitutive relationships while still allowing for a correct description of the main nonlinear effects. After presenting classical 2D finite element applications on structural elements, an enhanced simplified FE description including a damage description and based on the use of multi-fiber beam elements is provided. Improvements to this description are introduced both to prevent dependency on mesh size as damage evolves and to take into account specific phenomena (permanent strains and damping, steel-concrete debonding). Applications on RC structures subjected to cyclic loads are discussed, and results lead to justifying the various concepts and assumptions explained.

The evaluation of complex elastic modulus of the foundation by the rectangular plate loading test (직사각형 재하판을 이용한 평판재하시험에 의한 지반의 합성탄성계수 추정에 관한 연구)

  • 강차훈;조현영;정진환;김성도
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.10a
    • /
    • pp.166-173
    • /
    • 2000
  • This paper describes the method of evaluating the elastic modulus of soil medium by using the Retangular Plate Loading Test. The foundaton is considered to be the elastic half-space. The stiffness matrix of elastic half space is drived using Boussinesq's analytical soulution. A numerical examples are presented to verify the validity of this procedure. Also, the numerical results are compared with those of the existing study results. The procedure proposed in this theses can be applied to the design of concrete paving resting on the elastic foundation

  • PDF

A numerical approach for simulating the behaviour of timber shear walls

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.383-407
    • /
    • 2012
  • A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

The Interpretation of Separation Mechanism of Ridge-Cut Explosive Bolt Using Software Simulation Program

  • Lee, Y. J.;Kim, D. J.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.532-543
    • /
    • 2004
  • The present work have been developed the interpretation processor including the behavior of material failure and the separation phenomena under transient dynamic loading (the operation of explosive bolt) using AUTODYN V4.3, SoildWork 2003 and TrueGrid V2.1 programs. It has been demonstrated that the interpretation in ridge-cut explosive bolt under dynamic loading condition should be necessary to the appropriate failure model and the basic stress of bolt failure is the principal stress. The use of this interpretation processor developing the present work could be extensively helped to design the shape and the amount of explosives in the explosive bolt having a complex geometry. It is also proved that the interpretation processor approach is an accurate and effective analysis technique to evaluate the separation mechanism in explosive bolts.

  • PDF

A Propellant Loading Analysis Program of Bipropellant Propulsion System (이원추진제 추진계의 추진제 충전 해석 프로그램)

  • Chae, Jong-Won;Han, Cho-Young;Yu, Myoung-Jong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.10
    • /
    • pp.1048-1053
    • /
    • 2009
  • It proposes an simple and intuitive method that calculates the equilibrium pressures of a propellant tank by appling the mass conservation principle on the helium in the liquid propellant and in an ullage volume of the propellant tank. A propellant loading analysis program is developed and validated against the existing reference data. And it has applied to the present developing program, COMS Chemical Propulsion Subsystem and the results are compared, it may use to develop a technology of the next geostationary complex satellite's propulsion system.

Dynamic Masterplan of the Saemangeum Grain Complex for Progressive Development (점진적 개발 단계를 고려한 새만금 복합곡물단지의 동태적 마스터플랜 수립)

  • Jung, Chanhoon;Kim, Chanwoo;Kim, Solhee;Park, Jinseon;Seo, Donguk;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.4
    • /
    • pp.1-13
    • /
    • 2018
  • The grain complex of Saemangeum is created for promoting the foundation of agriculture combined the global competitiveness. However, the masterplan is being also revised with changing of local conditions and social needs. Thus, the dynamic masterplan is needed to consider the change of time for Saemangeum project. The present study was made to set up the dynamic masterplan of Saemangeum grain complex for handling the change such as project progress, local environment, and project conditions flexibly. In this study, the dynamic masterplan for the progressive development of water supply, farmland composition, and introduction facilities is presented to the 6-2 zone in three stages. We believed that the water supply would be possible through the pumping and desalination facilities with the development stages. The farmland composition proceeded for each complex with reclamation, soil preparation, and soft soil processing. And it is planned to carry out crop cultivation from the complex where the construction is completed first. The introduction facilities were analyzed focusing on the silos and forage loading facilities, and the optimal location of them was selected using road and accessibility. The concept of dynamic masterplan may provide the direction for the planning and progress of reclamation project.