대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.860-879
/
2002
Traditionally, Geographical Information Systems can only process spatial data in a procedure-oriented way, and the data can't be treated integrally. This method limits the development of spatial data applications. A new and promising method to solve this problem is the spatial structural query language, which extends SQL and provides integrated accessing to spatial data. In this paper, the theory of spatial structural query language is discussed, and a new geographical data model based on the concepts and data model in OGIS is introduced. According to this model, we implemented a spatial structural query language G/SQL. Through the studies of the 9-Intersection Model, G/SQL provides a set of topological relational predicates and spatial functions for GIS application development. We have successfully developed a Web-based GIS system-WebGIS-using G/SQL. Experiences show that the spatial operators G/SQL offered are complete and easy-to-use. The BNF representation of G/SQL syntax is included in this paper.
In order to generate the input data for rapid prototyping, a new approach which is based on the implicit surface interpolation method is presented. In the method a surface is reconstructed by creating smooth implicit surface from unorganized cloud of points through which the surface should pass. In the method an implicit surface is defined by the adaptive local shape functions including quadratic polynomial function, cubic polynomial function and RBF(Radial Basis Function). By the reconstruction of a surface, various types of error in raw STL file including degenerated triangles, undesirable holes with complex shapes and overlaps between triangles can be eliminated automatically. In order to get the slicing data for rapid prototyping an efficient intersection algorithm between implicit surface and plane is developed. For the direct usage for rapid prototyping, a robust transformation algorithm for the generation of complete STL data of solid type is also suggested.
The purpose of this paper is to provide the affirmative solution of the following conjecture due to Davis and Geramita. Conjecture; Let A=R[T] be a polynomial ring in one variable, where R is a regular local ring of dimension d. Then maximal ideals in A are complete intersection. Geramita has proved that the conjecture is true when R is a regular local ring of dimension 2. Whatwadekar has rpoved that conjecture is true when R is a formal power series ring over a field and also when R is a localization of an affine algebra over an infinite perfect field. Nashier also proved that conjecture is true when R is a local ring of D[ $X_{1}$,.., $X_{d-1}$] at the maximal ideal (.pi., $X_{1}$,.., $X_{d-1}$) where (D,(.pi.)) is a discrete valuation ring with infinite residue field. The methods to establish our results are following from Nashier's method. We divide this paper into three sections. In section 1 we state Theorems without proofs which are used in section 2 and 3. In section 2 we prove some lemmas and propositions which are used in proving our results. In section 3 we prove our main theorem.eorem.rem.
Let I denote an ideal of a Noetherian local ring (R, m). Let M denote a finitely generated R-module. We study the endomorphism ring of the local cohomology module $H^c_I(M)$, c = grade(I, M). In particular there is a natural homomorphism $$Hom_{\hat{R}^I}({\hat{M}}^I,\;{\hat{M}}^I){\rightarrow}Hom_R(H^c_I(M),\;H^c_I(M))$$, $where{\hat{\cdot}}^I$ denotes the I-adic completion functor. We provide sufficient conditions such that it becomes an isomorphism. Moreover, we study a homomorphism of two such endomorphism rings of local cohomology modules for two ideals $J{\subset}I$ with the property grade(I, M) = grade(J, M). Our results extends constructions known in the case of M = R (see e.g. [8], [17], [18]).
A sufficient condition for an Artinian complete intersection quotient S = 𝕜[x, y]/(xm, yn), where 𝕜 is an algebraically closed field of a prime characteristic, to have the strong Lefschetz property (SLP) was proved by S. B. Glasby, C. E. Praezer, and B. Xia in [3]. In contrast, we find a necessary and sufficient condition on m, n satisfying 3 ≤ m ≤ n and p > 2m-3 for S to fail to have the SLP. Moreover we find the Jordan types for S failing to have SLP for m ≤ n and m = 3, 4.
We show that the characteristic function $1S_{\underline{\alpha}}$ of any Harder-Narasimhan strata $S{\underline{\alpha}}\;{\subset}\;Coh_X^{\alpha}$ belongs to the spherical Hall algebra $H_X^{sph}$ of a smooth projective curve X (defined over a finite field $\mathbb{F}_q$). We prove a similar result in the geometric setting: the intersection cohomology complex IC(${\underline{S}_{\underline{\alpha}}$) of any Harder-Narasimhan strata ${\underline{S}}{\underline{\alpha}}\;{\subset}\;{\underline{Coh}}_X^{\underline{\alpha}}$ belongs to the category $Q_X$ of spherical Eisenstein sheaves of X. We show by a simple example how a complete description of all spherical Eisenstein sheaves would necessarily involve the Brill-Noether stratas of ${\underline{Coh}}_X^{\underline{\alpha}}$.
In a previous paper, we described some Siegel modular threefolds which admit a Calabi-Yau model. Using a different method we give in this paper an enlarged list of such varieties. Basic for this method is a paper of van Geemen and Nygaard. They study a variety $\mathcal{X}$ that is the complete intersection of four quadrics in $\mathbb{P}^7(\mathbb{C})$. This is biholomorphic equivalent to the Satake compactification of $\mathcal{H}_2/{\Gamma}^{\prime}$ for a certain subgroup ${\Gamma}^{\prime}{\subset}Sp(2,\mathbb{Z})$ and it will be the starting point of our investigation. It has been pointed out that a (projective) small resolution of this variety is a rigid Calabi-Yau manifold $\tilde{\mathcal{X}}$. Then we will consider the action of quotients of modular groups on $\mathcal{X}$ and study possible resolutions that admits a Calabi-Yau model in the category of complex spaces.
In these notes we introduce a numerical function which allows us to describe explicitly (and nonrecursively) the Betti numbers, and hence, the Hilbert function of a set Z of three fat points whose support is an almost complete intersection (ACI) in ${\mathbb{P}}^1{\times}{\mathbb{P}}^1$. A nonrecursively formula for the Betti numbers and the Hilbert function of these configurations is hard to give even for the corresponding set of five points on a special support in ${\mathbb{P}}^2$ and we did not find any kind of this result in the literature. Moreover, we also give a criterion that allows us to characterize the Hilbert functions of these special set of fat points.
For a foliation 𝓕 of degree r over ℙ2, we can regard it as a maximal invertible sheaf N∨𝓕 of Ωℙ2, which is represented by a section s ∈ H0(Ωℙ2 (r+2)). The singular locus Sing𝓕 of 𝓕 is the zero dimensional subscheme Z(s) of ℙ2 defined by s. Campillo and Olivares have given some characterizations of the singular locus by using some cohomology groups. In this paper, we will give some different characterizations. For example, the singular locus of a foliation over ℙ2 can be characterized as the residual subscheme of r collinear points in a complete intersection of two curves of degree r + 1.
본 연구에서는 수치모델링을 통해 단열의 교차각과 같은 기하학적 특징이 교차점에서의 유동특성과 용질의 혼합·분배에 미치는 영향을 연구하였다. Pe(Peclect number; 이류와 확산의 상대적인 비)뿐만이 아니라 단열의 교차각이 교차점에서의 용질의 혼합·분배모델을 결정하는데 있어 중요한 역할을 하는 것으로 나타났다. 교차각이 90°미만인 경우, 주입된 유동방향과 동일한 방향의 유출구로 진행하기 때문에 교차점에서 양쪽 주입구에서 온 유선들의 접촉을 용이하게 한다. 반면, 교차각이 90°보다 큰 경우 유체가 주입된 유동방향과 유출구의 방향이 반대이기 때문에, 교차점에 두 주입구에서 온 유선들 간의 접촉은 최소화 되었다. 그러므로 전자의 경우에서는 높은 Pe에서도 용질의 혼합이, 후자에서는 낮은 Pe에서도 유선경로에 따른 용질의 이동이 나타났다. 따라서 Pe < 1의 경우, 완전혼합모델이 지배적인 것으로 알려졌지만, 교차각이 150°인 경우 교차점에서 혼합뿐만이 아니라 일부는 유선의 경로를 따라 유출구로 유출되었다. 전반적으로 Pe가 0.1 - 100에서 완전혼합모델에서 유선경로모델로의 전이가 나타났지만, 이는 교차각에 따라 크게 달라진다. 교차각이 클수록(≧ 150°) Pe가 0.1 - 10에서, 교차각이 작을수록(≦ 30°) Pe가 10 - 100에서 전이가 발생하였다. Pe > 100에서는 교차각과 상관없이 유선경로모델이 더 지배적인 것으로 나타났다. Pe > 1,000에서는 교차각이 150°이상인 경우에만 100% 유선경로모델이 나타나며, 교차각이 150°미만인 경우 유선경로모델이 지배적이지만 여전히 교차점에서 용질의 혼합이 발생하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.