FIGURE 1. The set of 3 fat points in ℙ1 × ℙ1
FIGURE 2. The set of 5 fat points in ℙ2
References
-
E. Carlini, M. V. Catalisano, and A. Oneto, On the Hilbert function of general fat points in
${\mathbb{P}}^1{\time}{\mathbb{P}}^1$ . ArXiv preprint arXiv:1711.06193. (2017) - M. V. Catalisano, "Fat" points on a conic, Comm. Algebra 19 (1991), no. 8, 2153-2168. https://doi.org/10.1080/00927879108824252
- S. Cooper, G. Fatabbi, E. Guardo, A. Lorenzini, J. Migliore, U. Nagel, A. Seceleanu, J. Szpond, and A. Van Tuyl, Symbolic powers of codimension two Cohen-Macaulay ideals, Preprint 2016, available at http://arxiv.org/pdf/1606.00935.pdf,
-
G. Favacchio, The Hilbert function of bigraded algebras in k[
${\mathbb{P}}^1{\time}{\mathbb{P}}^1$ ]. To appear in Journal of Commutative Algebra. (2018) https://projecteuclid.org/euclid.jca/1523433691. -
G. Favacchio and E. Guardo, The minimal free resolution of fat almost complete intersections in
${\mathbb{P}}^1{\time}{\mathbb{P}}^1$ , Canad. J. Math. 69 (2017), no. 6, 1274-1291. https://doi.org/10.4153/CJM-2016-040-4 - G. Favacchio, E. Guardo, and J. Migliore, On the arithmetically Cohen-Macaulay property for sets of points in multiprojective spaces, Proc. Amer. Math. Soc. 146 (2018), no. 7, 2811-2825. https://doi.org/10.1090/proc/13981
- G. Favacchio and J. Migliore, Multiprojective spaces and the arithmetically Cohen-Macaulay property, Accepted for publication. Mathematical Proceedings of the Cambridge Philosophical Society http://dx.doi.org/10.1017/S0305004118000142 (2018)
-
A. V. Geramita, J. Migliore, and L. Sabourin, On the first infinitesimal neighborhood of a linear configuration of points in
${\mathbb{P}}^2$ , J. Algebra 298 (2006), no. 2, 563-611. https://doi.org/10.1016/j.jalgebra.2006.01.035 - A. Gimigliano, Our thin knowledge of fat points, in The Curves Seminar at Queen's, Vol. VI (Kingston, ON, 1989), Exp. B, 50 pp, Queen's Papers in Pure and Appl. Math., 83, Queen's Univ., Kingston, ON, 1989.
- S. Giuffrida, R. Maggioni, and A. Ragusa, On the postulation of 0-dimensional subschemes on a smooth quadric, Pacific J. Math. 155 (1992), no. 2, 251-282. https://doi.org/10.2140/pjm.1992.155.251
-
E. Guardo and B. Harbourne, Resolutions of ideals of any six fat points in
$P^2$ , J. Algebra 318 (2007), no. 2, 619-640. https://doi.org/10.1016/j.jalgebra.2007.09.018 -
E. Guardo, B. Harbourne, and A. Van Tuyl, Symbolic powers versus regular powers of ideals of general points in
${\mathbb{P}}^1{\time}{\mathbb{P}}^1$ , Canad. J. Math. 65 (2013), no. 4, 823-842. https://doi.org/10.4153/CJM-2012-045-3 -
E. Guardo, B. Harbourne, and A. Van Tuyl, Fat lines in
${\mathbb{P}}^3$ : powers versus symbolic powers, J. Algebra 390 (2013), 221-230. https://doi.org/10.1016/j.jalgebra.2013.05.028 -
E. Guardo and A. Van Tuyl, Arithmetically Cohen-Macaulay sets of points in
${\mathbb{P}}^1{\time}{\mathbb{P}}^1$ , SpringerBriefs in Mathematics, Springer, Cham, 2015. -
B. Harbourne, Free resolutions of fat point ideals on
${\mathbb{P}}^2$ , J. Pure Appl. Algebra 125 (1998), no. 1-3, 213-234. https://doi.org/10.1016/S0022-4049(96)00126-0 -
B. Harbourne, Problems and progress: a survey on fat points in
${\mathbb{P}}^2$ , in Zero-dimensional schemes and applications (Naples, 2000), 85-132, Queen's Papers in Pure and Appl. Math., 123, Queen's Univ., Kingston, ON, 2002.