• Title/Summary/Keyword: Complete graph

Search Result 188, Processing Time 0.026 seconds

The Four Color Algorithm (4-색 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.5
    • /
    • pp.113-120
    • /
    • 2013
  • This paper proposes an algorithm that proves an NP-complete 4-color theorem by employing a linear time complexity where $O(n)$. The proposed algorithm accurately halves the vertex set V of the graph $G=(V_1,E_1)$ into the Maximum Independent Set (MIS) $\bar{C_1}$ and the Minimum Vertex Cover Set $C_1$. It then assigns the first color to $\bar{C_1}$ and the second to $\bar{C_2}$, which, along with $C_2$, is halved from the connected graph $G=(V_2,E_2)$, a reduced set of the remaining vertices. Subsequently, the third color is assigned to $\bar{C_3}$, which, along with $C_3$, is halved from the connected graph $G=(V_3,E_3)$, a further reduced set of the remaining vertices. Lastly, denoting $C_3$ as $\bar{C_4}$, the algorithm assigns the forth color to $\bar{C_4}$. The algorithm has successfully obtained the chromatic number ${\chi}(G)=4$ with 100% probability, when applied to two actual map and two planar graphs. The proposed "four color algorithm", therefore, could be employed as a general algorithm to determine four-color for planar graphs.

A Polynomial Time Algorithm for Vertex Coloring Problem (정점 색칠 문제의 다항시간 알고리즘)

  • Lee, Sang-Un;Choi, Myeong-Bok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.85-93
    • /
    • 2011
  • The Vertex Coloring Problem hasn't been solved in polynomial time, so this problem has been known as NP-complete. This paper suggests linear time algorithm for Vertex Coloring Problem (VCP). The proposed algorithm is based on assumption that we can't know a priori the minimum chromatic number ${\chi}(G)$=k for graph G=(V,E) This algorithm divides Vertices V of graph into two parts as independent sets $\overline{C}$ and cover set C, then assigns the color to $\overline{C}$. The element of independent sets $\overline{C}$ is a vertex ${\upsilon}$ that has minimum degree ${\delta}(G)$ and the elements of cover set C are the vertices ${\upsilon}$ that is adjacent to ${\upsilon}$. The reduced graph is divided into independent sets $\overline{C}$ and cover set C again until no edge is in a cover set C. As a result of experiments, this algorithm finds the ${\chi}(G)$=k perfectly for 26 Graphs that shows the number of selecting ${\upsilon}$ is less than the number of vertices n.

Algorithm for Maximum Degree Vertex Partition of Cutwidth Minimization Problem (절단 폭 최소화 문제의 최대차수 정점 분할 알고리즘)

  • Sang-Un Lee
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.1
    • /
    • pp.37-42
    • /
    • 2024
  • This paper suggests polynomial time algorithm for cutwidth minimization problem that classified as NP-complete because the polynomial time algorithm to find the optimal solution has been unknown yet. To find the minimum cutwidth CWf(G)=max𝜈VCWf(𝜈)for given graph G=(V,E),m=|V|, n=|E|, the proposed algorithm divides neighborhood NG[𝜈i] of the maximum degree vertex 𝜈i in graph G into left and right and decides the vertical cut plane with minimum number of edges pass through the vertex 𝜈i firstly. Then, we split the left and right NG[𝜈i] into horizontal sections with minimum pass through edges. Secondly, the inner-section vertices are connected into line graph and the inter-section lines are connected by one line layout. Finally, we perform the optimization process in order to obtain the minimum cutwidth using vertex moving method. Though the proposed algorithm requires O(n2) time complexity, that can be obtains the optimal solutions for all of various experimental data

Solving L(2,1)-labeling Problem of Graphs using Genetic Algorithms (유전자 알고리즘을 이용한 그래프에서 L(2,1)-labeling 문제 연구)

  • Han, Keun-Hee;Kim, Chan-Soo
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.131-136
    • /
    • 2008
  • L(2,1)-labeling of a graph G is a function f: V(G) $\rightarrow$ {0, 1, 2, ...} such that $|f(u)\;-\;f(\upsilon)|\;{\geq}\;2$ when d(u, v) = 1 and $|f(u)\;-\;f(\upsilon)|\;{\geq}\;1$ when d(u, $\upsilon$) = 2. L(2,1)-labeling number of G, denoted by ${\lambda}(G)$, is the smallest number m such that G has an L(2,1)-labeling with no label greater than m. Since this problem has been proved to be NP-complete, in this article, we develop genetic algorithms for L(2,1)-labeling problem and show that the suggested genetic algorithm peforms very efficiently by applying the algorithms to the class of graphs with known optimum values.

Reliability Analysis of Multi-functional Multi-state Standby System Using Weibull Distribution (와이블 분포를 이용한 다기능 다중상태 대기시스템의 신뢰도 분석)

  • Kim, Ji-Hye;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.3
    • /
    • pp.138-147
    • /
    • 2017
  • As the functions and structure of the system are complicated and elaborated, various types of structures are emerging to increase reliability in order to cope with a system requiring higher reliability. Among these, standby systems with standby components for each major component are mainly used in aircraft or power plants requiring high reliability. In this study, we consider a standby system with a multi-functional standby component in which one standby component simultaneously performs the functions of several major components. The structure of a parallel system with multifunctional standby components can also be seen in real aircraft hydraulic pump systems and is very efficient in terms of weight, space, and cost as compared to a basic standby system. All components of the system have complete operation, complete failure, only two states, and the system has multiple states depending on the state of the component. At this time, the multi-functional standby component is assumed to be in a non-operating standby state (Cold Standby) when the main component fails. In addition, the failure rate of each part follows the Weibull distribution which can be expressed as increasing type, constant type, and decreasing type according to the shape parameter. If the Weibull distribution is used, it can be applied to various environments in a realistic manner compared to the exponential distribution that can be reflected only when the failure rate is constant. In this paper, Markov chain analysis method is applied to evaluate the reliability of multi-functional multi-state standby system. In order to verify the validity of the reliability, a graph was generated by applying arbitrary shape parameters and scale parameter values through Excel. In order to analyze the effect of multi-functional multi-state standby system using Weibull distribution, we compared the reliability based on the most basic parallel system and the standby system.

Flow-based Anomaly Detection Using Access Behavior Profiling and Time-sequenced Relation Mining

  • Liu, Weixin;Zheng, Kangfeng;Wu, Bin;Wu, Chunhua;Niu, Xinxin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.6
    • /
    • pp.2781-2800
    • /
    • 2016
  • Emerging attacks aim to access proprietary assets and steal data for business or political motives, such as Operation Aurora and Operation Shady RAT. Skilled Intruders would likely remove their traces on targeted hosts, but their network movements, which are continuously recorded by network devices, cannot be easily eliminated by themselves. However, without complete knowledge about both inbound/outbound and internal traffic, it is difficult for security team to unveil hidden traces of intruders. In this paper, we propose an autonomous anomaly detection system based on behavior profiling and relation mining. The single-hop access profiling model employ a novel linear grouping algorithm PSOLGA to create behavior profiles for each individual server application discovered automatically in historical flow analysis. Besides that, the double-hop access relation model utilizes in-memory graph to mine time-sequenced access relations between different server applications. Using the behavior profiles and relation rules, this approach is able to detect possible anomalies and violations in real-time detection. Finally, the experimental results demonstrate that the designed models are promising in terms of accuracy and computational efficiency.

DARK ENERGY REFLECTIONS IN THE REDSHIFT-SPACE QUADRUPOLE

  • NISHIOKA HIROAKI;YAMAMOTO KAZUHIRO;BASSETT BRUCE A.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.175-178
    • /
    • 2005
  • We show that next-generation galaxy surveys such as KAOS (the Kilo-Aperture Optical Spectro-graph)will constrain dark energy even if the baryon oscillations are missing from the monopole power spectrum and the bias is scale- and time-dependent KAOS will accurately measure the quadrupole power spectrum which gives the leading anisotropies in the power spectrum in redshift space due to peculiar velocities, the finger of God effect, as well as the Alcock-Paczynski effect. The combination of monopole and quadrupole power spectra powerfully breaks the degeneracy between the bias parameters and dark energy and, in the complete absence of baryon oscillations ($\Omega$b = 0), leads to a roughly $500\%$ improvement in constraints on dark energy compared with the monopole spectrum alone. As a result, for KAOS the worst case with no oscillations has dark energy errors only mildly degraded relative to the ideal case, providing insurance on the robustness of KAOS constraints on dark energy. We show that nonlinear effects are crucial in correctly evaluating the quadrupole and significantly improving the constraints on dark energy when we allow for multi-parameter scale-dependent bias.

A Study on the Analysis of Incompressible and Looped Flow Network Using Topological Constitutive Matrix Equation (위상구성행렬식을 이용한 비압축성 순환망 형태의 유로망 해석에 관한 연구)

  • Yoo, Seong-Yeon;Kim, Bum-Shin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.8
    • /
    • pp.573-578
    • /
    • 2010
  • Topological matrix which reflects characteristics of network connectivity has been widely used in efficient solving for complicated flow network. Using topological matrix, one can easily define continuity at each node of flow network and make algorithm to automatically generate continuity equation of matrix form. In order to analyze flow network completely it is required to satisfy energy conservation in closed loops of flow network. Fundamental cycle retrieving algorithm based on graph theory automatically constructs energy conservation equation in closed loops. However, it is often accompanied by NP-complete problem. In addition, it always needs fundamental cycle retrieving procedure for every structural change of flow network. This paper proposes alternative mathematical method to analyze flow network without fundamental cycle retrieving algorithm. Consequently, the new mathematical method is expected to reduce solving time and prevent error occurrence by means of simplifying flow network analysis procedure.

Implementation of A Bridge Monitoring System Based on Ubiquitous Sensor Networks (USN기반의 교량 모니터링 시스템 구현)

  • Lee, Sung-Hwa;Jeon, Min-Suk;Lee, An-Kyu;Kim, Jin-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • The proposed real-time structural health monitoring(SHM) system in past transferred and received data, central server gathered data from sensors, through coaxial cable. an immense sum of money is required to structure sensor network using coaxial cable. This paper proposes USN-based structural health monitoring(SHM). AIso, this paper designs and realizes prototypes according to proposed SHM. The value of sensing data obtained through HSDPA transfer to the BMS(Bridge Monitoring Server) passing through the TCP / IP socket by building two-way communication system, We have implemented a complete graph converting full system.

  • PDF

Weakly Complementary Cycles in 3-Connected Multipartite Tournaments

  • Volkmann, Lutz;Winzen, Stefan
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.2
    • /
    • pp.287-302
    • /
    • 2008
  • The vertex set of a digraph D is denoted by V (D). A c-partite tournament is an orientation of a complete c-partite graph. A digraph D is called cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that V(D) = $V(C_1)\;{\cup}\;V(C_2)$, and a multipartite tournament D is called weakly cycle complementary if there exist two vertex disjoint cycles $C_1$ and $C_2$ such that $V(C_1)\;{\cup}\;V(C_2)$ contains vertices of all partite sets of D. The problem of complementary cycles in 2-connected tournaments was completely solved by Reid [4] in 1985 and Z. Song [5] in 1993. They proved that every 2-connected tournament T on at least 8 vertices has complementary cycles of length t and ${\mid}V(T)\mid$ - t for all $3\;{\leq}\;t\;{\leq}\;{\mid}V(T)\mid/2$. Recently, Volkmann [8] proved that each regular multipartite tournament D of order ${\mid}V(D)\mid\;\geq\;8$ is cycle complementary. In this article, we analyze multipartite tournaments that are weakly cycle complementary. Especially, we will characterize all 3-connected c-partite tournaments with $c\;\geq\;3$ that are weakly cycle complementary.