Abstract
L(2,1)-labeling of a graph G is a function f: V(G) $\rightarrow$ {0, 1, 2, ...} such that $|f(u)\;-\;f(\upsilon)|\;{\geq}\;2$ when d(u, v) = 1 and $|f(u)\;-\;f(\upsilon)|\;{\geq}\;1$ when d(u, $\upsilon$) = 2. L(2,1)-labeling number of G, denoted by ${\lambda}(G)$, is the smallest number m such that G has an L(2,1)-labeling with no label greater than m. Since this problem has been proved to be NP-complete, in this article, we develop genetic algorithms for L(2,1)-labeling problem and show that the suggested genetic algorithm peforms very efficiently by applying the algorithms to the class of graphs with known optimum values.
그래프 G = (V, E) 의 L(2,1)-labeling 이란 함수 f: V(G) $\rightarrow$ {0, 1, 2, ...} 를 정의하는 것으로서 함수 f 는 만일 G 내의 두 개 정점 u, $\upsilon$ 사이의 최단거리가 1 인 경우 $|f(u)\;-\;f(\upsilon)|\;{\geq}\;2$ 라는 조건 및 최단거리가 2 인 경우 $|f(u)\;-\;f(\upsilon)|\;{\geq}\;1$ 라는 조건을 만족시켜야 한다. ${\lambda}(G)$ 로 표기되는 G 의 L(2,1)-labeling 수는 모든 가능한 f 들 사이에서 사용된 가장 큰 정수가 가장 작은 값을 나타낸다. 상기한 문제는 NP-complete 계열의 문제이기 때문에 본 논문에서는 L(2,1)-labeling 에 적용 가능한 유전자 알고리즘을 개발한 후 개발된 알고리즘을 최적값이 알려진 그래프들에 적용하여 그 효율성을 보이고자 한다.