DOI QR코드

DOI QR Code

Solving L(2,1)-labeling Problem of Graphs using Genetic Algorithms

유전자 알고리즘을 이용한 그래프에서 L(2,1)-labeling 문제 연구

  • Published : 2008.04.30

Abstract

L(2,1)-labeling of a graph G is a function f: V(G) $\rightarrow$ {0, 1, 2, ...} such that $|f(u)\;-\;f(\upsilon)|\;{\geq}\;2$ when d(u, v) = 1 and $|f(u)\;-\;f(\upsilon)|\;{\geq}\;1$ when d(u, $\upsilon$) = 2. L(2,1)-labeling number of G, denoted by ${\lambda}(G)$, is the smallest number m such that G has an L(2,1)-labeling with no label greater than m. Since this problem has been proved to be NP-complete, in this article, we develop genetic algorithms for L(2,1)-labeling problem and show that the suggested genetic algorithm peforms very efficiently by applying the algorithms to the class of graphs with known optimum values.

그래프 G = (V, E) 의 L(2,1)-labeling 이란 함수 f: V(G) $\rightarrow$ {0, 1, 2, ...} 를 정의하는 것으로서 함수 f 는 만일 G 내의 두 개 정점 u, $\upsilon$ 사이의 최단거리가 1 인 경우 $|f(u)\;-\;f(\upsilon)|\;{\geq}\;2$ 라는 조건 및 최단거리가 2 인 경우 $|f(u)\;-\;f(\upsilon)|\;{\geq}\;1$ 라는 조건을 만족시켜야 한다. ${\lambda}(G)$ 로 표기되는 G 의 L(2,1)-labeling 수는 모든 가능한 f 들 사이에서 사용된 가장 큰 정수가 가장 작은 값을 나타낸다. 상기한 문제는 NP-complete 계열의 문제이기 때문에 본 논문에서는 L(2,1)-labeling 에 적용 가능한 유전자 알고리즘을 개발한 후 개발된 알고리즘을 최적값이 알려진 그래프들에 적용하여 그 효율성을 보이고자 한다.

Keywords

References

  1. D. Goncalves, On the L(p, 1)-labelling of graphs, Discrete Math. and Theor. Comp. Science AE, pp. 81-86, 2005
  2. F. S. Roberts: Working group agenda of DIMACS/DIMATIA/Renyi working group on graph coloring and their generalizaitions, 2003
  3. Gerard J. Change, Changhong Lu, Distance-two labelings of graphs, European Journal of Combinatorics 24 pp. 53-58, 2003 https://doi.org/10.1016/S0195-6698(02)00134-8
  4. Hans L. Bodlaender, Ton Kloks, Richard B. Tan and Jan van Leeuwen, Approximations for $\lambda$-coloring of graphs, The Computer Journal 47, pp. 193-204, 2004 https://doi.org/10.1093/comjnl/47.2.193
  5. Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor
  6. J. R. Griggs, R. K. Yeh, Labelling graphs with a condition at distance two, SIAM J. Discrete Math. 5, pp. 586-595, 1992 https://doi.org/10.1137/0405048
  7. Oliver, I. M., Smith, D. J and Holland, J. R. C, A study of permutation crossover operators on the TSP, In Genetic Algorithms and Their Applications: Proceedings of the Second International Conference, Cambridge, MA, pp. 224-230
  8. Pedro Larranaga, Cindy M.H. Kuijpers, Mikel Poza and Roberto H. Murga, Decomposing Bayesian networks: triangulation of the moral graph with genetic algorithms Statistics and Computing 7, pp. 19.34, 1997 https://doi.org/10.1023/A:1018553211613
  9. Zbigniew Michalewicz, Genetic Algorithms+Data Structures=Evolution Programs, Springer-Verlag, Berlin, 1992

Cited by

  1. Study on the L(2,1)-labeling problem based on simulated annealing algorithm vol.21, pp.1, 2011, https://doi.org/10.5391/JKIIS.2011.21.1.138
  2. Fuzzy Testing of Independence in Bivariate Normal Distribution vol.21, pp.1, 2011, https://doi.org/10.5391/JKIIS.2011.21.1.1