• Title/Summary/Keyword: Competing Risk

Search Result 69, Processing Time 0.019 seconds

Estimation methods and interpretation of competing risk regression models (경쟁 위험 회귀 모형의 이해와 추정 방법)

  • Kim, Mijeong
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1231-1246
    • /
    • 2016
  • Cause-specific hazard model (Prentice et al., 1978) and subdistribution hazard model (Fine and Gray, 1999) are mostly used for the right censored survival data with competing risks. Some other models for survival data with competing risks have been subsequently introduced; however, those models have not been popularly used because the models cannot provide reliable statistical estimation methods or those are overly difficult to compute. We introduce simple and reliable competing risk regression models which have been recently proposed as well as compare their methodologies. We show how to use SAS and R for the data with competing risks. In addition, we analyze survival data with two competing risks using five different models.

Reliability Analysis under the Competing Risks (경쟁적 위험하에서의 신뢰성 분석)

  • Baik, Jaiwook
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

Nonpararmetric estimation for interval censored competing risk data

  • Kim, Yang-Jin;Kwon, Do young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.947-955
    • /
    • 2017
  • A competing risk analysis has been applied when subjects experience more than one type of end points. Geskus (2011) showed three types of estimators of CIF are equivalent under left truncated and right censored data. We extend his approach to an interval censored competing risk data by using a modified risk set and evaluate their performance under several sample sizes. These estimators show very similar results. We also suggest a test statistic combining Sun's test for interval censored data and Gray's test for right censored data. The test sizes and powers are compared under several cases. As a real data application, the suggested method is applied a data where the feasibility of the vaccine to HIV was assessed in the injecting drug uses.

Competing Risk Model for Mobile Phone Service (이동통신시장 서비스를 위한 경쟁위험모형)

  • Lee, Jae Kang;Sohn, So Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.32 no.2
    • /
    • pp.120-125
    • /
    • 2006
  • Since Korean government has implemented the "Number Portability System" in the domestic mobile communications market, mobile communication companies have been striving to hold onto existing customers and at the same time to attract new customers. This paper presents a competing risk model that considers the characteristics of a customer in order to predict the customer's life under the "Number Portability System." Three competing risks considered are pricing policy, quality of communication, and usefulness of service. It was observed that the customers who pay more are less sensitive on pricing policy younger people are less sensitive than older people to the quality of communication and women are more sensitive than men to the degree of usefulness of service. We expect that the result of this study can be used as a guideline for effective management of mobile phone customers under the Number Portability System.

A case study of competing risk analysis in the presence of missing data

  • Limei Zhou;Peter C. Austin;Husam Abdel-Qadir
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.1-19
    • /
    • 2023
  • Observational data with missing or incomplete data are common in biomedical research. Multiple imputation is an effective approach to handle missing data with the ability to decrease bias while increasing statistical power and efficiency. In recent years propensity score (PS) matching has been increasingly used in observational studies to estimate treatment effect as it can reduce confounding due to measured baseline covariates. In this paper, we describe in detail approaches to competing risk analysis in the setting of incomplete observational data when using PS matching. First, we used multiple imputation to impute several missing variables simultaneously, then conducted propensity-score matching to match statin-exposed patients with those unexposed. Afterwards, we assessed the effect of statin exposure on the risk of heart failure-related hospitalizations or emergency visits by estimating both relative and absolute effects. Collectively, we provided a general methodological framework to assess treatment effect in incomplete observational data. In addition, we presented a practical approach to produce overall cumulative incidence function (CIF) based on estimates from multiple imputed and PS-matched samples.

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

Multiple imputation for competing risks survival data via pseudo-observations

  • Han, Seungbong;Andrei, Adin-Cristian;Tsui, Kam-Wah
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.4
    • /
    • pp.385-396
    • /
    • 2018
  • Competing risks are commonly encountered in biomedical research. Regression models for competing risks data can be developed based on data routinely collected in hospitals or general practices. However, these data sets usually contain the covariate missing values. To overcome this problem, multiple imputation is often used to fit regression models under a MAR assumption. Here, we introduce a multivariate imputation in a chained equations algorithm to deal with competing risks survival data. Using pseudo-observations, we make use of the available outcome information by accommodating the competing risk structure. Lastly, we illustrate the practical advantages of our approach using simulations and two data examples from a coronary artery disease data and hepatocellular carcinoma data.

A Multivariate Mixture of Linear Failure Rate Distribution in Reliability Models

  • EI-Gohary A wad
    • International Journal of Reliability and Applications
    • /
    • v.6 no.2
    • /
    • pp.101-115
    • /
    • 2005
  • This article provides a new class of multivariate linear failure rate distributions where every component is a mixture of linear failure rate distribution. The new class includes several multivariate and bivariate models including Marslall and Olkin type. The approach in this paper is based on the introducing a linear failure rate distributed latent random variable. The distribution of minimum in a competing risk model is discussed.

  • PDF

A Mixture of Multivariate Distributions with Pareto in Reliability Models

  • El-Gohary Awad
    • International Journal of Reliability and Applications
    • /
    • v.7 no.1
    • /
    • pp.55-69
    • /
    • 2006
  • This paper presents a new class of multivariate distributions with Pareto where dependence among the components is characterized by a latent random variable. The new class includes several multivariate and bivariate models of Marshall and Olkin type. It is found the bivariate distribution with Pareto is positively quadrant dependent and its mixture. Some important structural properties of the bivariate distributions with Pareto are discussed. The distribution of minimum in a competing risk Pareto model is derived.

  • PDF

Statistical analysis of economic activity state of workers with industrial injuries using a competing risk model (경쟁위험분석을 이용한 산재 근로자의 원직장복귀에 대한 연구)

  • Doh, Gippeum;Kim, Sooyeon;Kim, Yang-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1271-1281
    • /
    • 2015
  • Competing risk analysis is widely applied to analyze a failure time with more than two causes. This paper discusses the application of a competing risk model to a economic activity state of workers with occupational injuries. In particular, main interest is to estimate the distribution of restarting time two kinds of economic activities, (i) returning to original working place and (ii) finding a new job. In this paper, we applied a cumulative incidence function to evaluate their patterns under several individual factors and working place's factor. Furthermore, a subdistributional regression model is applied to estimate the effect of these factors on the returning time. According to result, worker with higher education, younger age and longer working period had a higher chance to return an original working place while one with more severe injuries and skilled laborer had longer returning time to an original working place.