• 제목/요약/키워드: Competing Risk

검색결과 69건 처리시간 0.02초

경쟁 위험 회귀 모형의 이해와 추정 방법 (Estimation methods and interpretation of competing risk regression models)

  • 김미정
    • 응용통계연구
    • /
    • 제29권7호
    • /
    • pp.1231-1246
    • /
    • 2016
  • 경쟁위험에 대한 연구 중 주로 쓰이는 방법은 Cause-specific 위험 모형과 subdistribution을 이용한 비례 위험 모형 방법이다. 그 이후에도 많은 모형이 제시되었지만, 추정 방법 면에서 설명력이 부족하거나 알고리즘으로 구현하기 어려운 단점을 가지고 있어서 잘 활용되고 있지 않다. 이 논문에서는 Cause-specific 위험 모형, subdistribution을 이용한 비례 위험 모형과 비교적 최근에 제시된 이항 회귀 모형(direct binomial model), 절대 위험 회귀 모형(absolute risk regression model), Eriksson 등 (2015)의 비례 오즈 모형(proportional odds model)을 소개하고 추정 방법을 간단히 설명하고자 한다. 각 모형에 대하여 SAS와 R을 이용한 활용 방법을 제시하고, 두 가지 경쟁위험이 존재하는 데이터를 R을 이용하여 분석하였다.

경쟁적 위험하에서의 신뢰성 분석 (Reliability Analysis under the Competing Risks)

  • 백재욱
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제16권1호
    • /
    • pp.56-63
    • /
    • 2016
  • Purpose: The purpose of this study is to point out that the Kaplan-Meier method is not valid to calculate the survival probability or failure probability (risk) in the presence of competing risks and to introduce more valid method of cumulative incidence function. Methods: Survival analysis methods have been widely used in biostatistics division. However the same methods have not been utilized in reliability division. Especially competing risks cases, where several causes of failure occur and the occurrence of one event precludes the occurrence of the other events, are scattered in reliability field. But they are not noticed in the realm of reliability expertism or they are analysed in the wrong way. Specifically Kaplan-Meier method which assumes that the censoring times and failure times are independent is used to calculate the probability of failure in the presence of competing risks, thereby overestimating the real probability of failure. Hence, cumulative incidence function is introduced and sample competing risks data are analysed using cumulative incidence function and some graphs. Finally comparison of cumulative incidence functions and regression type analysis are mentioned briefly. Results: Cumulative incidence function is used to calculate the survival probability or failure probability (risk) in the presence of competing risks and some useful graphs depicting the failure trend over the lifetime are introduced. Conclusion: This paper shows that Kaplan-Meier method is not appropriate for the evaluation of survival or failure over the course of lifetime. In stead, cumulative incidence function is shown to be useful. Some graphs using the cumulative incidence functions are also shown to be informative.

Nonpararmetric estimation for interval censored competing risk data

  • Kim, Yang-Jin;Kwon, Do young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권4호
    • /
    • pp.947-955
    • /
    • 2017
  • A competing risk analysis has been applied when subjects experience more than one type of end points. Geskus (2011) showed three types of estimators of CIF are equivalent under left truncated and right censored data. We extend his approach to an interval censored competing risk data by using a modified risk set and evaluate their performance under several sample sizes. These estimators show very similar results. We also suggest a test statistic combining Sun's test for interval censored data and Gray's test for right censored data. The test sizes and powers are compared under several cases. As a real data application, the suggested method is applied a data where the feasibility of the vaccine to HIV was assessed in the injecting drug uses.

이동통신시장 서비스를 위한 경쟁위험모형 (Competing Risk Model for Mobile Phone Service)

  • 이재강;손소영
    • 대한산업공학회지
    • /
    • 제32권2호
    • /
    • pp.120-125
    • /
    • 2006
  • Since Korean government has implemented the "Number Portability System" in the domestic mobile communications market, mobile communication companies have been striving to hold onto existing customers and at the same time to attract new customers. This paper presents a competing risk model that considers the characteristics of a customer in order to predict the customer's life under the "Number Portability System." Three competing risks considered are pricing policy, quality of communication, and usefulness of service. It was observed that the customers who pay more are less sensitive on pricing policy younger people are less sensitive than older people to the quality of communication and women are more sensitive than men to the degree of usefulness of service. We expect that the result of this study can be used as a guideline for effective management of mobile phone customers under the Number Portability System.

A case study of competing risk analysis in the presence of missing data

  • Limei Zhou;Peter C. Austin;Husam Abdel-Qadir
    • Communications for Statistical Applications and Methods
    • /
    • 제30권1호
    • /
    • pp.1-19
    • /
    • 2023
  • Observational data with missing or incomplete data are common in biomedical research. Multiple imputation is an effective approach to handle missing data with the ability to decrease bias while increasing statistical power and efficiency. In recent years propensity score (PS) matching has been increasingly used in observational studies to estimate treatment effect as it can reduce confounding due to measured baseline covariates. In this paper, we describe in detail approaches to competing risk analysis in the setting of incomplete observational data when using PS matching. First, we used multiple imputation to impute several missing variables simultaneously, then conducted propensity-score matching to match statin-exposed patients with those unexposed. Afterwards, we assessed the effect of statin exposure on the risk of heart failure-related hospitalizations or emergency visits by estimating both relative and absolute effects. Collectively, we provided a general methodological framework to assess treatment effect in incomplete observational data. In addition, we presented a practical approach to produce overall cumulative incidence function (CIF) based on estimates from multiple imputed and PS-matched samples.

Regression analysis of interval censored competing risk data using a pseudo-value approach

  • Kim, Sooyeon;Kim, Yang-Jin
    • Communications for Statistical Applications and Methods
    • /
    • 제23권6호
    • /
    • pp.555-562
    • /
    • 2016
  • Interval censored data often occur in an observational study where the subject is followed periodically. Instead of observing an exact failure time, two inspection times that include it are available. There are several methods to analyze interval censored failure time data (Sun, 2006). However, in the presence of competing risks, few methods have been suggested to estimate covariate effect on interval censored competing risk data. A sub-distribution hazard model is a commonly used regression model because it has one-to-one correspondence with a cumulative incidence function. Alternatively, Klein and Andersen (2005) proposed a pseudo-value approach that directly uses the cumulative incidence function. In this paper, we consider an extension of the pseudo-value approach into the interval censored data to estimate regression coefficients. The pseudo-values generated from the estimated cumulative incidence function then become response variables in a generalized estimating equation. Simulation studies show that the suggested method performs well in several situations and an HIV-AIDS cohort study is analyzed as a real data example.

Multiple imputation for competing risks survival data via pseudo-observations

  • Han, Seungbong;Andrei, Adin-Cristian;Tsui, Kam-Wah
    • Communications for Statistical Applications and Methods
    • /
    • 제25권4호
    • /
    • pp.385-396
    • /
    • 2018
  • Competing risks are commonly encountered in biomedical research. Regression models for competing risks data can be developed based on data routinely collected in hospitals or general practices. However, these data sets usually contain the covariate missing values. To overcome this problem, multiple imputation is often used to fit regression models under a MAR assumption. Here, we introduce a multivariate imputation in a chained equations algorithm to deal with competing risks survival data. Using pseudo-observations, we make use of the available outcome information by accommodating the competing risk structure. Lastly, we illustrate the practical advantages of our approach using simulations and two data examples from a coronary artery disease data and hepatocellular carcinoma data.

A Multivariate Mixture of Linear Failure Rate Distribution in Reliability Models

  • EI-Gohary A wad
    • International Journal of Reliability and Applications
    • /
    • 제6권2호
    • /
    • pp.101-115
    • /
    • 2005
  • This article provides a new class of multivariate linear failure rate distributions where every component is a mixture of linear failure rate distribution. The new class includes several multivariate and bivariate models including Marslall and Olkin type. The approach in this paper is based on the introducing a linear failure rate distributed latent random variable. The distribution of minimum in a competing risk model is discussed.

  • PDF

A Mixture of Multivariate Distributions with Pareto in Reliability Models

  • El-Gohary Awad
    • International Journal of Reliability and Applications
    • /
    • 제7권1호
    • /
    • pp.55-69
    • /
    • 2006
  • This paper presents a new class of multivariate distributions with Pareto where dependence among the components is characterized by a latent random variable. The new class includes several multivariate and bivariate models of Marshall and Olkin type. It is found the bivariate distribution with Pareto is positively quadrant dependent and its mixture. Some important structural properties of the bivariate distributions with Pareto are discussed. The distribution of minimum in a competing risk Pareto model is derived.

  • PDF

경쟁위험분석을 이용한 산재 근로자의 원직장복귀에 대한 연구 (Statistical analysis of economic activity state of workers with industrial injuries using a competing risk model)

  • 도기쁨;김수연;김양진
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1271-1281
    • /
    • 2015
  • 본 논문에서는 '제1회 산재보험패널조사'에서 제공된 자료를 이용하여 산재 근로자의 경제 활동 유형의 특성을 연구하였다. 조사 대상자는 2012년도에 산재 요양을 종결한 근로자이며 총 2,000명이 지역, 장해등급 및 재활서비스 이용여부로 층화계통추출되었다. 본 연구에서는 근로자가 산재 후 참여하는 경제활동의 유형으로 원직장복귀뿐만 아니라 다른 직장으로의 재취업의 가능성을 고려하여 이러한 경제활동으로의 이동에 어떤 요인이 영향을 미치는지 조사하고자 한다. 원직장복귀에 영향을 미치는 요인을 분석하기 위하여 총 1,463명의 연구 대상자에게 경쟁위험 분석방법을 적용하였다. 또한 경제활동상태에 영향을 미치는 요인을 세 가지 유형 (산재 근로자의 특성, 재해 사업장의 특성, 산업재해의 특성)으로 나누어 통합 분석을 시행하였다. 분석 결과를 통해 학력이 높고 근로기간이 길수록 원직장복귀가 빨라짐을 알 수 있었다. 또한 연령이 높고, 기능원 및 관련 기능직에 종사자이며, 장해의 정도가 심한 산재 근로자가 원직장복귀까지 더 오랜 시간이 걸렸음을 알 수 있었다.