• Title/Summary/Keyword: Common fixed points

Search Result 160, Processing Time 0.021 seconds

AN ITERATION SCHEMES FOR NONEXPANSIVE MAPPINGS AND VARIATIONAL INEQUALITIES

  • Wang, Hong-Jun;Song, Yi-Sheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.991-1002
    • /
    • 2011
  • An iterative algorithm is provided to find a common element of the set of fixed points of a nonexpansive mapping and the set of solutions of some variational inequality in a Hilbert space. Using this result, we consider a strong convergence result for finding a common fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping. Our results include the previous results as special cases and can be viewed as an improvement and refinement of the previously known results.

A HYBRID METHOD FOR A COUNTABLE FAMILY OF LIPSCHITZ GENERALIZED ASYMPTOTICALLY QUASI-NONEXPANSIVE MAPPINGS AND AN EQUILIBRIUM PROBLEM

  • Cholamjiak, Prasit;Cholamjiak, Watcharaporn;Suantai, Suthep
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.335-351
    • /
    • 2013
  • In this paper, we introduce a new iterative scheme for finding a common element of the fixed points set of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings and the solutions set of equilibrium problems. Some strong convergence theorems of the proposed iterative scheme are established by using the concept of W-mappings of a countable family of uniformly Lipschitzian generalized asymptotically quasi-nonexpansive mappings.

ABSORBING PAIRS FACILITATING COMMON FIXED POINT THEOREMS FOR LIPSCHITZIAN TYPE MAPPINGS IN SYMMETRIC SPACES

  • Gopal, Dhananjay;Hasan, Mohammad;Imdad, Mohammad
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.2
    • /
    • pp.385-397
    • /
    • 2012
  • The purpose of this paper is to improve certain results proved in a recent paper of Soliman et al. [20]. These results are the outcome of utilizing the idea of absorbing pairs due to Gopal et al. [6] as opposed to two conditions namely: weak compatibility and the peculiar condition initiated by Pant [15] to ascertain the common fixed points of Lipschitzian mappings. Some illustrative examples are also furnished to highlight the realized improvements.

COMMON FIXED POINTS FOR WEAKENED COMPATIBLE MAPPINGS SATISFYING THE GENERALIZED ϕ-WEAK CONTRACTION CONDITION

  • Jain, Deepak;Kumar, Sanjay;Jung, Chahn Yong
    • The Pure and Applied Mathematics
    • /
    • v.26 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • In this paper, we prove some common fixed point theorems for pairs of weakened compatible mappings (subcompatible and occasionally weakly compatible mappings) satisfying a generalized ${\phi}-weak$ contraction condition involving various combinations of the metric functions. In fact, our results improve the results of Jain et al.. Also we provide an example for validity of our results.

EXISTENCE OF SOLUTION OF DIFFERENTIAL EQUATION VIA FIXED POINT IN COMPLEX VALUED b-METRIC SPACES

  • Mebawondu, A.A.;Abass, H.A.;Aibinu, M.O.;Narain, O.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.303-322
    • /
    • 2021
  • The concepts of new classes of mappings are introduced in the spaces which are more general space than the usual metric spaces. The existence and uniqueness of common fixed points and fixed point results are established in the setting of complete complex valued b-metric spaces. An illustration is given by establishing the existence of solution of periodic differential equations in the framework of a complete complex valued b-metric spaces.

STRONG CONVERGENCE THEOREMS BY VISCOSITY APPROXIMATION METHODS FOR ACCRETIVE MAPPINGS AND NONEXPANSIVE MAPPINGS

  • Chang, Shih-Sen;Lee, H.W. Joseph;Chan, Chi Kin
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.59-68
    • /
    • 2009
  • In this paper we present an iterative scheme for finding a common element of the set of zero points of accretive mappings and the set of fixed points of nonexpansive mappings in Banach spaces. By using viscosity approximation methods and under suitable conditions, some strong convergence theorems for approximating to this common elements are proved. The results presented in the paper improve and extend the corresponding results of Kim and Xu [Nonlinear Anal. TMA 61 (2005), 51-60], Xu [J. Math. Anal. Appl., 314 (2006), 631-643] and some others.

  • PDF

VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE SEMINGROUPS AND MONOTONE MAPPPINGS

  • Zhang, Lijuan
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.597-604
    • /
    • 2012
  • Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.

AN ITERATIVE SCHEME FOR EQUILIBRIUM PROBLEMS AND FIXED POINT PROBLEMS OF ASYMPTOTICALLY k-STRICT PSEUDO-CONTRACTIVE MAPPINGS

  • Wang, Ziming;Su, Yongfu
    • Communications of the Korean Mathematical Society
    • /
    • v.25 no.1
    • /
    • pp.69-82
    • /
    • 2010
  • In this paper, we propose an iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of an asymptotically k-strict pseudo-contractive mapping in the setting of real Hilbert spaces. We establish some weak and strong convergence theorems of the sequences generated by our proposed scheme. Our results are more general than the known results which are given by many authors. In particular, necessary and sufficient conditions for strong convergence of our iterative scheme are obtained.

FIXED POINTS OF ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN THE INTERMEDIATE SENSE IN CAT(0) SPACES

  • Abbas, Mujahid;Thakur, Balwant Singh;Thakur, Dipti
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.1
    • /
    • pp.107-121
    • /
    • 2013
  • The purpose of this paper is to investigate the demiclosed principle, the existence theorems and convergence theorems in CAT(0) spaces for a class of mappings which is essentially wider than that of asymptotically nonexpansive mappings. The structure of fixed point set of such mappings is also studied. Our results generalize, unify and extend several comparable results in the existing literature.

FIXED POINT THEOREMS IN COMPLEX VALUED CONVEX METRIC SPACES

  • Okeke, G.A.;Khan, S.H.;Kim, J.K.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.1
    • /
    • pp.117-135
    • /
    • 2021
  • Our purpose in this paper is to introduce the concept of complex valued convex metric spaces and introduce an analogue of the Picard-Ishikawa hybrid iterative scheme, recently proposed by Okeke [24] in this new setting. We approximate (common) fixed points of certain contractive conditions through these two new concepts and obtain several corollaries. We prove that the Picard-Ishikawa hybrid iterative scheme [24] converges faster than all of Mann, Ishikawa and Noor [23] iterative schemes in complex valued convex metric spaces. Also, we give some numerical examples to validate our results.