References
- E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Student 63 (1994), 123–145.
- L.-C. Ceng, S. Al-Homidan, Q. H. Ansari, and J.-C. Yao, An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, J. Comput. Appl. Math. (2008); doi:10.1016/j.cam.2008.03.032.
- L.-C. Ceng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. Comput. Appl. Math. (2007); doi:10.1016/j.cam.2007.02.022.
- P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), 117–136.
- S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program. 78 (1997), 29–41. https://doi.org/10.1016/S0025-5610(96)00071-8
- F. Flores-Bazan, Existence theory for finite-dimensional pseudomonotone equilibrium problems, Acta Appl. Math. 77 (2003), 249–297. https://doi.org/10.1023/A:1024971128483
- K. Geobel and W. A. Kirk, Topics on Metric Fixed-Point Theory, Cambridge University Press, Cambridge, England, 1990.
- N. Hadjisavvas, S. Komlsi, and S. Schaible, Handbook of Generalized Convexity and Generalized Monotonicity, Springer-Verlag, Berlin, Heidelberg, New York, 2005.
- N. Hadjisavvas and S. Schaible, From scalar to vector equilibrium problems in the quasimonotone case, J. Optim. Theory Appl. 96 (1998), 297–309. https://doi.org/10.1023/A:1022666014055
- T. H. Kim and H. K. Xu, Convergence of the modified Mann's iteration method for asymptotically strict pseudo-contractions, Nonlinear Analysis-Theory Methods & Applications 68 (2008), 2828–2836. https://doi.org/10.1016/j.na.2007.02.029
- G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336–346. https://doi.org/10.1016/j.jmaa.2006.06.055
- A. Moudafi, Viscosity approximation methods for fixed-point problems, J. Math. Anal. Appl. 241 (2000), 46–55. https://doi.org/10.1006/jmaa.1999.6615
- M. O. Osilike and Y. Shehu, Cyclic algorithm for common fixed points of finite family of strictly pseudocontractive mappings of Browder-Petryshyn type, Nonlinear Analysis (2008); doi:10.1016/j.na.2008.07.015.
- A. Tada and W. Takahashi, Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, in: W. Takahashi, T. Tanaka (Eds.), Nonlinear Analysis and Convex Analysis, Yokohama Publishers, Yokohama, 2006, pp. 609–617.
- S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), 506–515. https://doi.org/10.1016/j.jmaa.2006.08.036