• Title/Summary/Keyword: Command&Control

Search Result 1,396, Processing Time 0.029 seconds

Development of electro hydraulic ballast remote valve control system with diagnostic function using redundant modbus communication (이중화 모드버스 통신을 이용한 퍼지기반 고장진단기능을 가진 선박 밸러스트 전기유압식 원격밸브제어시스템 개발)

  • Kim, Jong Hyun;Yu, Yung Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.292-301
    • /
    • 2014
  • This paper describes development of distributed type independent electro-hydraulic ballast valve remote control system with diagnostic function based on fuzzy inference using redundant Modbus communication and ethernet Modbus TCP/IP. Diagnostic function estimate degradation of system components and diagnose system faults, which results in shortage of fault maintenance time and improvement of system safety. Slave devices which control each valve and master device which command, monitor and diagnose slave system are developed. Slave devices are connected to master device with redundant Modbus networks and master device is connected to ship's integrated control system with Modbus TCP/IP. Also this paper describes development of simulator to test and confirm whether developed system can be integrated with ship's integrated control and monitoring system.

Position and Attitude Control System Design of Magnetic Suspension and Balance System for Wind Tunnel Test using Iterative Feedback Tuning and L1 Adaptive Control Scheme (IFT와 L1 적응제어기법을 이용한 풍동실험용 자기부상 비접촉식 밸런스의 제어시스템 설계)

  • Lee, Dong-Kyu
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.5
    • /
    • pp.28-35
    • /
    • 2017
  • Magnetic Suspension and Balance System (MSBS) demonstrates the capacity to levitate an experimental model absent any mechanical contact using magnetic forces and moments. It allows precise control of position and attitude of the model, and measures external forces and moments acting on the model. For the purpose of acquisition of reliable experimental results under stable and safe conditions, the performance and robustness of the position and attitude control system of MSBS needs to be improved. To this end, Iterative Feedback Tuning (IFT) and L1 adaptive output feedback algorithm were employed to automatically increase command following performance and to ensure robust operation of MSBS with failure of electric power supply. The applicability was validated using computational simulation.

Design and Implementation of Real-Time Management System for Efficient Operation of Motor Control Center (모터제어센터의 효율적인 운영을 위한 실시간 관리 시스템의 설계 및 구현)

  • Lee, Tae-Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.247-253
    • /
    • 2008
  • In this paper, we describes the design and implementation of real-time management system for efficient operation via monitoring and control of MCC(Motor Control Center). The real-tine management system can be divided hardware(MCC panel) and software(management program). First, hardware is divided into load attaching motor and MCC components for working together control and data network. Second, software(management system) are consisted of communication interface, environment setting, data processing modules. The produced and implemented reduction model of MCC panel is pretested using m-PRO, iM-PRO devices, and HyperTerminal. For field test, MCC panel is tested by RS-232C/485, communication procedure in management system is certified by transmitting and receiving message using control command. By the experimental results, the implemented real-time management system can be used to operate MCC system.

Development of Metro Train ATO Simulator by improving Train Model Fidelity (모델 충실도 향상을 통한 도시철도 열차자동운전제어 시뮬레이터 개발)

  • Kim, Jungtai
    • Journal of The Korean Society For Urban Railway
    • /
    • v.6 no.4
    • /
    • pp.363-372
    • /
    • 2018
  • Simulator is used to verifying the function and performance of train control system before verifying with actual train. In this case, it is important that the simulation result should be coincide with the result with actual train. In this paper, the process of the development of automatic train operation (ATO) is described. ATO is in charge of automatic train control such as speed regulation and precision stop control. Identical interfaces from the ATO to the actual train was made in the simulator. Therefore ATO communicates to the simulator in the same way to the actual train. Futhermore, the train dynamic properties was measured by experiments and these were applied to the train model. Hence the response of the train in the simulator to the acceleration command is similar to that of the actual train. The simulation result of precision stop control is compared with the result in the actual train test to show the fidelity of the train model derived in the study and the superiority of this simulator.

Implementation of Speech Recognition and Flight Controller Based on Deep Learning for Control to Primary Control Surface of Aircraft

  • Hur, Hwa-La;Kim, Tae-Sun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.57-64
    • /
    • 2021
  • In this paper, we propose a device that can control the primary control surface of an aircraft by recognizing speech commands. The speech command consists of 19 commands, and a learning model is constructed based on a total of 2,500 datasets. The training model is composed of a CNN model using the Sequential library of the TensorFlow-based Keras model, and the speech file used for training uses the MFCC algorithm to extract features. The learning model consists of two convolution layers for feature recognition and Fully Connected Layer for classification consists of two dense layers. The accuracy of the validation dataset was 98.4%, and the performance evaluation of the test dataset showed an accuracy of 97.6%. In addition, it was confirmed that the operation was performed normally by designing and implementing a Raspberry Pi-based control device. In the future, it can be used as a virtual training environment in the field of voice recognition automatic flight and aviation maintenance.

A Development of Robot Arm Direct Teaching System (로봇팔 직접 교시 시스템 개발)

  • Woong-Keun Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.85-92
    • /
    • 2024
  • In this paper, we developed an intuitive teaching and control system that directly teaches a task by holding the tip of a robotic arm and moving it to a desired position. The developed system consists of a 6-axis force sensor that measures position and attitude forces at the tip of the robot arm, an algorithm for generating robot arm joint speed control commands based on the measured forces at the tip, and a self-made 6-axis robot arm and control system. The six-dimensional force/torque of the position posture of the robot arm operator steering the handler is detected by the force sensor attached to the handler at the leading edge and converted into velocity commands at the leading edge to control the 7-axis robot arm. The verification of the research method was carried out with a self-made 7-axis robot, and it was confirmed that the proposed force sensor-based robot end-of-arm control method operates successfully through experiments by teaching the operator to adjust the handler.

A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System (NCW 환경에서 C4I 체계 전투력 상승효과 평가 알고리즘 : 기술 및 인적 요소 고려)

  • Jung, Whan-Sik;Park, Gun-Woo;Lee, Jae-Yeong;Lee, Sang-Hoon
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.2
    • /
    • pp.55-72
    • /
    • 2010
  • Recently, the battlefield environment has changed from platform-centric warfare(PCW) which focuses on maneuvering forces into network-centric warfare(NCW) which is based on the connectivity of each asset through the warfare information system as information technology increases. In particular, C4I(Command, Control, Communication, Computer and Intelligence) system can be an important factor in achieving NCW. It is generally used to provide direction across distributed forces and status feedback from thoseforces. It can provide the important information, more quickly and in the correct format to the friendly units. And it can achieve the information superiority through SA(Situational Awareness). Most of the advanced countries have been developed and already applied these systems in military operations. Therefore, ROK forces also have been developing C4I systems such as KJCCS(Korea Joint Command Control System). And, ours are increasing the budgets in the establishment of warfare information systems. However, it is difficult to evaluate the C4I effectiveness properly by deficiency of methods. We need to develop a new combat effectiveness evaluation method that is suitable for NCW. Existing evaluation methods lay disproportionate emphasis on technical factors with leaving something to be desired in human factors. Therefore, it is necessary to consider technical and human factors to evaluate combat effectiveness. In this study, we proposed a new Combat Effectiveness evaluation algorithm called E-TechMan(A Combat Effectiveness Evaluation Algorithm Considering Technical and Human Factors in C4I System). This algorithm uses the rule of Newton's second law($F=(m{\Delta}{\upsilon})/{\Delta}t{\Rightarrow}\frac{V{\upsilon}I}{T}{\times}C$). Five factors considered in combat effectiveness evaluation are network power(M), movement velocity(v), information accuracy(I), command and control time(T) and collaboration level(C). Previous researches did not consider the value of the node and arc in evaluating the network power after the C4I system has been established. In addition, collaboration level which could be a major factor in combat effectiveness was not considered. E-TechMan algorithm is applied to JFOS-K(Joint Fire Operating System-Korea) system that can connect KJCCS of Korea armed forces with JADOCS(Joint Automated Deep Operations Coordination System) of U.S. armed forces and achieve sensor to shooter system in real time in JCS(Joint Chiefs of Staff) level. We compared the result of evaluation of Combat Effectiveness by E-TechMan with those by other algorithms(e.g., C2 Theory, Newton's second Law). We can evaluate combat effectiveness more effectively and substantially by E-TechMan algorithm. This study is meaningful because we improved the description level of reality in calculation of combat effectiveness in C4I system. Part 2 will describe the changes of war paradigm and the previous combat effectiveness evaluation methods such as C2 theory while Part 3 will explain E-TechMan algorithm specifically. Part 4 will present the application to JFOS-K and analyze the result with other algorithms. Part 5 is the conclusions provided in the final part.

DESIGN AND IMPLEMENTATION OF HITL SIMULATOR COUPLEING COMMUNICATIONS PAYLOAD AND SOFTWARE SPACECRAFT BUS (통신탑재체와 소프트웨어 위성버스체를 통합한 HITL 시뮬레이터의 설계 및 구현)

  • 김인준;최완식
    • Journal of Astronomy and Space Sciences
    • /
    • v.20 no.4
    • /
    • pp.339-350
    • /
    • 2003
  • Engineering qualification model payload for a communications and broadcasting satellite(CBS) was developed by ETRI from May, 2000 to April, 2003. For. the purpose of functional test and verification of the payload, a real-time hardware-in-the-loop(HITL) CBS simulator(CBSSIM) was also developed. We assumed that the spacecraft platform for the CBSSIM is a geostationary communication satellite using momentum bias three-axis stabilization control technique based on Koreasat. The payload hardware is combined with CBSSIM via Power, Command and Telemetry System(PCTS) of Electrical Ground Support Equipment(EGSE). CBSSIM is connected with PCTS by TCP/IP and the payload is combined with PCTS by MIL-STD-1553B protocol and DC harness. This simulator runs under the PC-based simulation environment with Windows 2000 operating system. The satellite commands from the operators are transferred to the payload or bus subsystem models through the real-time process block in the simulator. Design requirements of the CBSSIM are to operate in real-time and generate telemetry. CBSSIM provides various graphic monitoring interfaces and control functions and supports both pre-launch and after-launch of a communication satellite system. In this paper, the HITL simulator system including CBSSIM, communications payload and PCTS as the medium of interface between CBSSIM and communications payload will be described in aspects of the system architecture, spacecraft models, and simulator operation environment.

Analysis of Network Influence Factor considering Social Network Analysis and C2 Time (소셜 네트워크 분석과 지휘통제시간을 고려한 네트워크 영향력 요소 분석)

  • Jeon, Jin-Tae;Park, Gun-Woo;Lee, Sang-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.257-266
    • /
    • 2011
  • Over the society the trial for several systems to be connected with Network has been continued to share information and to make it various. In accordance with such a change, the concept of military warfare conduction has been changing form platform centric warfare in separate combat system based on network centric warfare in network based. We have continuously made an effort that we try to get the goal with efficient system which is linked up with network, but such a study on that one in military system analysis is still slower than the study out of military until now. So this study is searching network influence factor by using military network with application of social network analysis method which is used broadly in the society and the science as well. At this time we search co-relationships between social network and the thing that we can analyse C2 time by effectiveness measurement means. By this study it has value of network influence factor identification for the growing network composition.

A Reconfigurable, General-purpose DSM-CC Architecture and User Preference-based Cache Management Strategy (재구성이 가능한 범용 DSM-CC 아키텍처와 사용자 선호도 기반의 캐시 관리 전략)

  • Jang, Jin-Ho;Ko, Sang-Won;Kim, Jung-Sun
    • The KIPS Transactions:PartC
    • /
    • v.17C no.1
    • /
    • pp.89-98
    • /
    • 2010
  • In current digital broadcasting systems, GEM(Globally Executable MHP)-based middlewares such as MHP(Multimedia Home Platform), OCAP(OpenCable Application Platform), ACAP(Advanced Common Application Platform) are the norm. Despite much of the common characteristics shared, such as MPEG-2 and DSM-CC(Digital Storage Media-Command and Control) protocols, the information and data structures they need are slightly different, which results in incompatibility issues. In this paper, in line with an effort to develop an integrated DTV middleware, we propose a general-purpose, reconfigurable DSM-CC architecture for supporting various standard GEM-based middlewares without code modifications. First, we identify DSM-CC components that are common and thus can be shared by all GEM-based middlewares. Next, the system is provided with middleware-specific information and data structures in the form of XML. Since the XML information can be parsed dynamically at run time, it can be interchanged either statically or dynamically for a specific target middleware. As for the performance issues, the response time and usage frequency of DSM-CC module highly contribute to the performance of STB(Set-Top-Box). In this paper, we also propose an efficient application cache management strategy and evaluate its performance. The performance result has shown that the cache strategy reflecting user preferences greatly helps to reduce response time for executing application.