• 제목/요약/키워드: Combustion-heat

검색결과 1,726건 처리시간 0.026초

대향류 확산화염의 고온공기 연소특성에 관한 수치해석 (A Numerical Analysis of the Characteristics with High Temperature Air Combustion in Counterflow Diffusion Flame)

  • 조은성;히데아키 코바야시;정석호
    • 한국연소학회지
    • /
    • 제8권4호
    • /
    • pp.9-14
    • /
    • 2003
  • High temperature air combustion technology has been utilized by using preheated air over 1100 K and excessive exhaust gas recirculation. Numerical analysis was performed to investigate the combustion characteristics with high temperature deficient oxygen air combustion by adopting a counterflow as a model problem accounting for detailed chemical kinetics. Methane($CH_4$) was used as a test fuel and calculated oxidizer conditions were low temperature high oxygen (300K, $X_{O2}=0.21$) and high temperature low oxygen (1300K, $X_{O2}=0.04$) conditions. The latter case showed that the flame temperature is lower than the former case and its profile showed monotonic decrease from oxidizer to fuel side, without having local maximum flame temperature at high stretch rate. Also, heat release rate was one order lower and it has one peak profile because of low oxygen concentration and heat release rate integral is almost same for stretch rate. High temperature low oxygen air combustion shows low NO emission characteristics.

  • PDF

폐기물 소각로 베드에서의 연소현상 관찰을 위한 실험적 연구 (An Experimental Study on the Bed Combustion Phenomena in MSW(Municipal Solid Waste) Incinerator)

  • 민지현;신동훈;최상민
    • 대한기계학회논문집B
    • /
    • 제23권2호
    • /
    • pp.159-165
    • /
    • 1999
  • Experimental studies have been performed to observe the basic phenomena of waste bed combustion in MSW incinerator. A reduced scale apparatus was utilized to simulate the combustion behavior in real plant with 1-dimensional transient behavior at the experimental setup, which uses wet cubic wood with ash content as simulated waste. LHV (lower heating value) of solid fuel, fuel particle size and flow rate of combustion air were taken as important parameters of the bed combustion. For the quantitative analysis, FPR (flame propagation rate), TBT (total burn-out time) and PBT (particle burn-out time) was defined. LHV represent the capability of heat release of the fuel, so that a higher LHV results in faster reaction rate of the fuel bed, which is shown by higher FPR. Fuel particle size is related with surface area per unit mass as well as heat and mass transfer coefficient. As the particle size increases the FPR decreases owing to decreasing specific surface area. Air injection supplies oxygen to the reaction zone. However oversupply of combustion air increases convection cooling of the bed and possibly extinguishes the flame.

가스 및 분무화염의 연소소음 특성에 관한 실험연구 (Combustion Noise Characteristics in Gas and Liquid Flames)

  • 김호석;백민수;오상헌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.81-91
    • /
    • 1994
  • Combustion noise involved with chemical heat release and turbulent process in turbopropulsion systems, gasturbine, industrial furnaces and internal engines is indeed noisy. The experimental study reported in this paper is made to identify a dominant combustion noise in jet flames. Gaseous propane and kerosene fuel have been used with air as the oxidizer in a different jet combustion systems. Combustion and aerodynamic noise are studied through far field sound pressure measurements in an anechoic chamber. And also mean temperature and velocities and turbulent intensities of both isothermal and reacting flow fields were measured. It is shown that axial mean velocity of reacting flow fields is higher about 1 to 3m/sec than that of cold flow in a gaseous combustor. As the gaseous fuel flow rate increases, the acoustic power increases. But the sound pressure level for the spray flame decreases with increasing equivalence ratio. The influence of temperature in the combustion fields due to chemical heat release has been observed to be a dominant noise source in the spray flame. The spectra of combustion noise in gaseous propane and kerosene jet flame show a predominantly low frequency and a broadband nature as compared with the noise characteristics in an isothermal air jet.

  • PDF

$W/KClO_4/BaCrO_4$ 지연제의 연소 메카니즘 (The Combustion Mechanism of Tungsten-potassium Perchlorate-barium Chromate Delay power)

  • Nakamura, Hidesugu;Akiyoshi, Miyako;Hara, Yasutake
    • 화약ㆍ발파
    • /
    • 제18권1호
    • /
    • pp.53-58
    • /
    • 2000
  • Thermal analysis, analysis of combustion residue and combustion characteristics measure ment such as burning rate or temperature were carried out to clarify the combustion mechanism of a tungsten- potassium perchlorate-barium chromate chromate delay powder. The results obtained are as follows. The main reaction of the delay powder of tungsten-potassium perchlorate-barium chromate is the oxidation of tungsten by potassium perchlorate. Barium chromate acts as a burning rate modifier, and the smaller the larger is the burning rate. Three types of delay composition used in this study show characteristic burning behavior. A stoichiomertric or a oxidizer-rich composition has a small linear burning rate. although it is has a large heat of combustion. On the other hand, a tungsten-excess or a fuel-rich composition with a small heat of combustion has a larger linear burning rate than the former, showing a small fractional oxidation of tungeten (below 10%) contained in the delay powder. From these results, a surface combustion mechanism is proposed for the combustion mechanism of this delay powder.

  • PDF

연소실 길이에 따른 이중선회 가스터빈 모델 연소기에서 연소불안정 모드 연구 (A Study of Combustion Instability Mode according to the Variation of Combustor Length in Dual Swirl Gas Turbine Model Combustor)

  • 장문석;이기만
    • 한국연소학회지
    • /
    • 제21권2호
    • /
    • pp.29-37
    • /
    • 2016
  • This study described the experimental investigations of combustion instability in a model gas turbine combustor. Strong coupling between pressure oscillations and unsteady heat release excites a self-sustained acoustic wave, which results in a loud and annoyed sound, and may also lead to a structural damage to the combustion system. In this study, in order to examine the combustion instability phenomenon of a dual swirling combustor configuration, the information of heat release and pressure fluctuation period with respect to the variation in both thermal power and combustor length was collected experimentally. As a result, the fundamental acoustic frequency turned out to increase with the increasing thermal power without respect to the combustor length. The frequency response to the combustor length was found to have two distinct regimes. In a higher power regime the frequency significantly decreases with the combustor length, as it is expected from the resonance of gas column. However, in a lower power regime it is almost insensitive to the combustor length. This insensitive response might be a result of the beating phenomenon between the interacting pilot and main flames with different periods.

실내사용 목재의 연소 특성 분석(I) (Combustion Properties of Woods for Indoor Use (I))

  • 손동원;강석구
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권6호
    • /
    • pp.675-681
    • /
    • 2014
  • 최근 친환경 재료에 대한 국민들의 관심이 높아지면서 실내사용목재의 이용도 증가하고 있다. 본 연구는 실내사용 목재의 내화성 부여를 위한 기초자료로 활용될 수 있는 열특성 분석에 그 목적이 있다. 열방출률과 열방출량, 가스발생량, 중량감소 등의 연소성질을 열중량 분석(TGA) 및 콘칼로리미터(KS F ISO 5660-1)의 방법으로 분석하였다. 분석결과 목재의 재질적 특성은 연소적 특성으로 발현되었으며, 열적성질과 연소가스 발생량과의 관계는 상관관계가 높게 나타났다. 탄화층 형성에 의한 연소억제 효과도 수종에 따라 현저한 차이를 보였다. 총열방출량과 중량감소량은 상관관계가 높게 나타났다. 점화시간과 총열방출량 등의 자료는 목재의 내화성능부여 등의 기초 자료로서 매우 중요하리라 판단되었다.

노즐 형상 변경이 소형 CRDI 엔진의 성능에 미치는 영향에 대한 수치 해석적 연구 (Numerical Study on the Effect of Nozzle Geometry on the Small CRDI Engine Performance)

  • 민세훈;서현규
    • 한국분무공학회지
    • /
    • 제20권4호
    • /
    • pp.254-260
    • /
    • 2015
  • The objective of this study is to investigate the effect of multi-hole nozzle on the performance of small CRDI engine. Combustion and exhaust emission characteristics of engine were studied by using CFD simulation with ECFM-3Z combustion model. The conditions of simulation were varied with nozzle geometry, injection timing and injection quantity. In addition, the results were compared in terms of combustion pressure, rate of heat release, $NO_x$ and soot emissions. It was found that combustion pressure was increased when injection timing was advanced. The rate of heat release of 6 hole nozzle was higher than that of 12 hole nozzle since the quantity of fuel impinged at the bottom of piston rim was different under different injection timing conditions. In the case of $NO_x$ emission, 6 hole nozzle generated more $NO_x$ emission than 12 hole nozzle. On the other hand, in the case of soot emission, 12 hole nozzle showed higher value than 6 hole nozzle because injected fuel droplets from multi-hole nozzle were coalesced.

연소열 및 화학양론계수를 이용한 알데히드류의 폭발한계의 예측 (Prediction of Explosion Limits of Aldehydes Using Chemical Stoichiometric Coefficients and Heats of Combustion)

  • 하동명
    • 한국가스학회지
    • /
    • 제19권2호
    • /
    • pp.5-11
    • /
    • 2015
  • 폭발한계는 가연성물질의 화재 및 폭발위험성을 결정하는데 주요한 특성치 가운데 하나이다. 많은 알데히드류는 연소열과 폭발한계, 화학양론계수와 폭발한계가 상관관계가 있음을 보여주고 있다. 본 연구에서, 알데히드류의 폭발하한계와 상한계에 대해 연소열과 화학양론계수를 이용하여 예측하였다. 제시된 예측식에 의한 예측값은 문헌값과 적은 오차범위에서 일치하였다. 제시된 방법론을 사용하여 다른 알데히드류의 폭발한계 예측이 가능해졌다.

크기에 따른 스위스 롤 형태 연소기의 성능 변화 (Effects of Size on the Performance of Heat-Recirculating Swiss-roll Combustors)

  • 오화영;김연호;허환일
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.46-49
    • /
    • 2006
  • Extinction limits and combustion temperatures in heat-recirculating excess enthalpy reactors employing both gas-phase and catalytic reaction have been examined previously, with and emphasis Reynolds number (Re) effects and possible application to microscale combustion devices. However, Re is not the only parameter needed to characterize reactor operation. In particular, the use of a fixed reactor size implies that residence time and Re cannot be adjusted independently. To remedy this situation, in this work geometrically similar reactors of different physical sizes were tested with the aim of independently determining the effects of Re and Da. It is found that the difference between catalytic and non-catalytic combustion limits narrow as scale decreases. Moreover, to assess the importance of wall thermal conductivity, reactors of varying wall thickness were studied. From these results the effect of scale on microscale reactor performance and implications for practical microcombustion devices are discussed.

  • PDF

시험연소로를 이용한 인도네시아산 아역청탄 2종의 연소특성 평가 (The evaluation of combustion characteristics for 2 kinds of Indonesian sub-bituminous coals by using combustion test facility at KEPRI)

  • 이현동;김성철;김종진;김태형;양승한;신영진;민창기
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 1999년도 제19회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.27-46
    • /
    • 1999
  • Combustion test on two kinds of Indonesian sub-bituminous coals of single and blended with bituminous coal imported for power generation was carried out by using the test furnace at KEPRI. The main items of combustion test were temperature profiles of the inside furnace, the yield of unburned carbon, environmental pollution emissions, slagging/fouling tendency, and the comparison of heat loss of furnace. The test results showed that low sulfur and ash content characterized by the Indonesian coals were advantageous to environmental aspect, but high tendency of heat loss and slagging/fouling were disadvantageous to boiler operation. From the results, the necessity of proper coal blending to compensate these weak points was recommended.

  • PDF