• 제목/요약/키워드: Combustion system

검색결과 2,159건 처리시간 0.036초

EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구 (A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC)

  • 이병호;이중섭;김보한;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.

초음속 코히어런트 제트에 관한 기초적 연구 (A Fundamental Study of the Supersonic Coherent Jet)

  • 정미선;조위분;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2139-2144
    • /
    • 2003
  • In steel-making processes of iron and steel industry, the purity and quality of steel can be dependent on the amount of CO contained in the molten metal. Recently, the supersonic oxygen jet is being applied to the molten metal in the electric furnace and thus reduces the CO amount through the chemical reactions between the oxygen jet and molten metal, leading to a better quality of steel. In this application, the supersonic oxygen jet is limited in the distance over which the supersonic velocity is maintained. In order to get longer supersonic jet propagation into the molten metal, a supersonic coherent jet is suggested as one of the alternatives which are applicable to the electric furnace system. It has a flame around the conventional supersonic jet and thus the entrainment effect of the surrounding gas into the supersonic jet is reduced, leading to a longer propagation of the supersonic jet. The objective of the present study is to investigate the supersonic coherent jet flow. A computational study is carried out to solve the compressible, axisymmetric Navier-Stokes equations. The computational results of the supersonic coherent jet are compared with the conventional supersonic jet.

  • PDF

연료 분사구 형상 변화 및 당량비 변화에 따른 MEMS 가스터빈 내 연료-공기 혼합에 관한 연구 (Investigation of the Mixedness of Fuel and Air in MEMS Gas Turbine Engine According to Change of Fuel Injectors and Equivalence Ratio)

  • 황유현;정동호;김선민;김대중
    • 대한기계학회논문집B
    • /
    • 제34권9호
    • /
    • pp.835-841
    • /
    • 2010
  • MEMS 가스터빈 엔진에서 연료와 공기의 혼합에 영향을 미치는 중요한 요소중 하나는 연료 분사구 형상의 설계이다. 본 연구에서는 3 개의 연료 주입부와 각 주입부에 연결된 여러 개의 분사구에 의해 연료와 공기가 혼합되는 시스템을 고려하여 분사구의 배열과 연료 공급비율의 변화에 따른 혼합 정도를 당량비를 통하여 정량적으로 해석하였다.

액체로켓엔진에서의 상온 기체를 이용한 라이너 막냉각 특성 연구 (A Study on Film Cooling Characteristics of Liner in Liquid Rocket Engine)

  • 전준수;이양석;이동형;김유;고영성;정해승
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제29회 추계학술대회논문집
    • /
    • pp.170-173
    • /
    • 2007
  • 본 연구에서는 액체로켓엔진 내부에 라이너를 설치하고 기체 질소를 이용한 막냉각 방법을 사용하여, 라이너의 막냉각 특성을 살펴보았다. 고온 가스는 액체로켓 연소가스와 액체질소를 혼합하여 사용하였다. 기존의 액체로켓엔진 시험 설비에 추가적으로 라이너 냉각 기체를 공급 설비를 구축하였으며, 라이너 및 냉각 기체 공급부를 제작하였다. 10초 연소 실험을 통해 라이너 내부 고온 가스의 온도와 라이너 외부 벽면 온도를 측정하였으며, 기체 질소에 의한 라이너 냉각 특성을 확인하였다.

  • PDF

압축착화 디젤엔진의 모사 EGR 시스템에 의한 소음 특성 변화 분석 (Study on Noise Generation Characteristics of Simulated EGR System for Compression Ignition Diesel Engine)

  • 박범;윤성준;박성욱;박준홍
    • 한국분무공학회지
    • /
    • 제19권4호
    • /
    • pp.204-210
    • /
    • 2014
  • Experimental study was conducted to investigate the effect of EGR(exhaust gas recirculation) on engine noise using single cylinder combustion ignition engine. Under constant engine rotary speed of 1200 RPM, 8 mg fuel quantity was injected with 15, 18 and 21% of oxygen ratio and 1400 bar of injection pressure. Using the in-cylinder pressure data acquired by a piezoelectric transducer, the engine performance parameters were calculated. Radiated engine noise measured for 10 seconds was analyzed using spectral characteristics and sound quality metrics such as loudness, sharpness, roughness. From the obtained engine performance parameters and sound quality metrics, effect of oxygen ratio of the premixed air, start of injection timing on frequency characteristic and sound quality metrics were analyzed. Correlation analysis was conducted between MPRR(maximum pressure rise rate), RI(ringing intensity) and sound quality metrics. RI was identified as the most important factor having influence on the sound quality metrics.

CNG/LPLI Bi-Fuel 자동차에서 주행시험 모드와 점화진각에 따른 배출가스 특성 (Exhaust Emissions Characteristics on Driving Cycle Mode and Ignition Advance Condition Change of CNG/LPLI Bi-Fuel Vehicle)

  • 조승완;김성훈;권석주;박성욱;전충환;서영호
    • 한국분무공학회지
    • /
    • 제19권1호
    • /
    • pp.40-46
    • /
    • 2014
  • Recently rise in oil prices feet the burden on not only diesel vehicle driver but also LPG vehicle driver, and get interested in various way to reduce fuel costs. In this study discuss on exhaust emissions characteristics on driving cycle mode and ignition advance condition change of CNG/LPLI Bi-Fuel vehicle. Experimental test was performed by changing the conditions of fuel (LPG/CNG), spark advance (Base, $10^{\circ}CA$, $15^{\circ}CA$), and driving mode (FTP-75, HWFET, and NEDC). In case of CO emission, in the order of CNG Base, CNG S/A10, S/A15 condition are average reduced -21%, -35%, -29% respectively compared to LPG fuel. The active emission reduction from the initial engine start, spark retard is likely to be beneficial in catalyst warm-up and improve combustion stability rather than spark advance.

SiC 복합체 제조를 위한 화학기상침착공정에 대한 수치해석 연구 (Numerical Study on CVI Process for SiC-Matrix Composite Formation)

  • 배성우;임동원;임익태
    • 반도체디스플레이기술학회지
    • /
    • 제14권2호
    • /
    • pp.61-65
    • /
    • 2015
  • SiC composite materials are usually used to very high temperature condition such as thermal protection system materials at space vehicles, combustion chambers or engine nozzles because they have high specific strength and good thermal properties at high temperature. One of the most widely used fabrication methods of SiC composites is the chemical vapor infiltration (CVI) process. During the process, chemical gases including Si are introduced into porous preform which is made by carbon fibers for infiltration. Since the processes take a very long time, it is important to reduce the process time in designing the reactors and processes. In this study, both the gas flow and heat transfer in the reactors during the processes are analyzed using a computational fluid dynamics method in order to design reactors and processes for uniform, high quality SiC composites. Effects of flow rate and heater temperature as process parameters to the infiltration process were examined.

Feasibility of combinational burnable poison pins for 24-month cycle PWR reload core

  • Dandi, Aiman;Lee, MinJae;Kim, Myung Hyun
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.238-247
    • /
    • 2020
  • The Burnable Poison (BP) is very important for all Light Water Reactors in order to hold-down the initial excess reactivity and to control power peaking. The use of BP is even more essential as the excess reactivity increases significantly with a longer operation cycle. In this paper a feasibility study was conducted in order to investigate the benefits of a new combinational BP concept designed for 24-month cycle PWR core. The reference designs in this study are based on the two Korean fuel assemblies; 17 × 17 Westinghouse (WH) design and 16 × 16 Combustion Engineering (CE) design. A modification was done on these two designs to extend their cycle length from 18 months into 24 months. DeCART2D-MASTER code system was used to perform assembly and core calculations for both designs. A preliminary test was conducted in order to choose the best BP suitable for 24-month as a representative for single BP concept. The comparison between the results of two concepts (combinational BP concept and single BP concept) showed that the combinational BP concept can replace the single BP concept with better performance on holding down the initial excess reactivity without violating the design limitations.

Importance Of Tribology in Positive-Displacement Type of Fluid Machinery and Heat Engine

  • Nakahara, Tsunamitsu
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.3-8
    • /
    • 1998
  • The industrial revolution in England was based on the manufacturing systems by the power of water mill and rapidly progressed by the innovation of steam engine. It is no exaggeration to say that today's civilization is realized by the development of various types of power machinery, namely fluid machinery and heat engine. The electric energy is converted mainly from thermal energy (mainly steam) of mineral oil, coal and nuclear fuel through generator connected with steam turbine which is a kind of power machinery. There are various types of power machinery as shown in Tables 1a and 1b. They are classified into two types by use. One is absorption type of fluid and/or thermal energy, for examples, windmill and heat engine. The other is provision type of the energies for examples, pump, compressor and propulsion. By flow type, they are also classified by two types, turbo type and positive-displacement type. The turbo type began from water mill and windmill and evolve to steam turbine and finally to gas turbine. The positive-displacement type started from reciprocating water pump and developed into steam engine and changed to reciprocating combustion engine. The pumps and motors used in oil hydraulic system for power control are also positive-displacement type.

  • PDF

피드포워드 제어기를 사용한 동기발전기의 과도특성 개선 (Improvement of Transient Performance of Synchronous Generator using Feedforward Controller)

  • 안영주
    • 전기학회논문지P
    • /
    • 제67권2호
    • /
    • pp.57-62
    • /
    • 2018
  • A brush-less type synchronous generator driven by an internal-combustion engine is used for emergency electric source. These types of generators have to maintain a certain range of output voltage even under the sudden load change conditions such as full load application and removal. This paper describes a method for suppressing the output voltage of a synchronous generator that operates excessively when the load fluctuates. The method used in this paper is a feedforward control method in which the main voltage control consists of a feedback loop using a typical PID controller and the load current is detected as a disturbance element and compensated directly. A feedforward system is constructed in which the load current is regarded as disturbance, and the appropriate feedforward controller configuration and parameters are found through simulation. Finally, it can be seen through the experiment that the feedforward control is performed properly. It can be seen that the generator terminal voltage is recovered to the steady state in a short period of time as compared with the existing PID control method even when the entire load of the generator is changed.