• Title/Summary/Keyword: Combined approach

Search Result 1,691, Processing Time 0.03 seconds

Robust Design to the Combined Array with Multiresponse

  • Kwon, Yong-Man
    • Journal of Integrative Natural Science
    • /
    • v.10 no.1
    • /
    • pp.51-57
    • /
    • 2017
  • The Taguchi parameter design in industry is an approach to reducing performance variation of quality characteristic in products and processes. In the Taguchi parameter design, the product array approach using orthogonal arrays is mainly used. It often requires an excessive number of experiments. An alternative approach, which is called the combined array approach, was studied. In these studies, only single response was considered. In this paper we propose how to simultaneously optimize multiresponse for the robust design using the combined array approach.

Treatment of Thoracolumbar and Lumbar Unstable Burst Fractures by Using Combined and Posterior Surgery

  • Shin, Jong Ki;Goh, Tae Sik;Son, Seung Min;Lee, Jung Sub
    • Journal of Trauma and Injury
    • /
    • v.29 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • Purpose: The purpose of this research was to analyze the results of the combined and posterior approaches for treating thoracolumbar and lumbar burst fractures and to find an adequate method of treatment. Methods: We retrospectively analyzed the cases of 46 patients with unstable thoracolumbar and lumbar burst fractures who had been surgically treated. All cases were divided into two groups based on the operation method used. Eleven patients had undergone the combined approach, while 35 patients had undergone the posterior approach. Radiological and clinical evaluations were performed before surgery, after surgery, and at the final follow-up. Results: The stenotic ratios of the area occupied by the retropulsed bony fragments to the estimated area of the original spinal canal were 68.2% and 45.6% for the combined and the posterior approaches, respectively. No significant differences in the neurological improvement or the corrected state of the sagittal index were noted, but the patients who had been treated with the combined approach group had better results than those who had been treated with the posterior approach group in terms of correction and maintenance of the sagittal index. The average kyphosis corrections at the final follow-up were 15.3 degrees for the patients in the combined approach group and 10.0 degrees for those in the posterior approach group. Surgical time and estimated blood loss were all significantly higher for patients in the combined approach group. Conclusion: The combined and the posterior approaches showed similar results in the improvements of the neurologic state and the corrected state of the sagittal index. However, use of the combined approach is recommended for patients with severe kyphosis and with severe canal encroachment.

Simultaneous Optimization for Robust Design Using Desirability Function to the Combined Array

  • Kwon, Yong-Man;Hong, Yeon-Woong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.97-106
    • /
    • 2002
  • Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. and studied by others. In these studies, only single quality characteristic was considered. We propose how to simultaneously optimize multiple quality characteristics using desirability function when we used the combined-array approach to assign control and noise factors. An example is illustrated to the combined-array approach.

  • PDF

Simultaneous Optimization for Robust Design using Distance and Desirability Function

  • Kwon, Yong-Man
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.685-696
    • /
    • 2001
  • Robust design is an approach to reducing performance variation of response values in products and processes. In the Taguchl parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. (1990) and studied by others. In these studies, only single response variable was considered. We propose how to simultaneously optimize multiple responses when there are correlations among responses, and when we use the combined-array approach to assign control and noise factors. An example is illustrated to show the difference between the Taguchi's product-array approach and the combined-array approach.

  • PDF

Simultaneous Optimization of Multiple Responses to the Combined Array

  • Kwon, Yong-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.2
    • /
    • pp.57-64
    • /
    • 2001
  • In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et al (1990) and studied by Vining and Myers (1990) and others. In these studies, only single respouse variable was considered. We propose how to simultaneously optimize multiple responses when there are correlations among responses.

  • PDF

Robust Design using Desirability Function to the Combined-Array with Multiple Quality Characteristics

  • Kwon, Yong-Man;Lee, Jang-Jae
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi has an idea that mean and variation are handled simultaneously to reduce the expected loss in products and processes. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was studied. In these studies, only single quality characteristic (or response) was considered. In this paper we propose how to simultaneously optimize for multiple quality characteristics (or multiresponse) using desirability function when we used the combined-array approach to assign control and noise factors.

Simultaneous Optimization of Multiple quality Characteristics to Robust Design using Desirability Function (로버스트 설계에서 기대함수를 이용한 다특성 동시 최적화 방안)

  • Kwon, Yong-Man;Park, Byung-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.126-142
    • /
    • 1999
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi has an idea that mean and variation are handled simultaneously to reduce the expected loss in products and processes. Taguchi parameter design has a great deal of advantages but it also has some disadvantages. The various research efforts aimed at developing alternative methods. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. ( 1990) and studied by others. In these studies, only single quality characteristic was considered. In this paper we propose how to simultaneously optimize multiple quality characteristics using desirability function when we used the combined-array approach to assign control and noise factors. An example is illustrated to show the difference between the Taguchi's product-array approach and the combined-array approach.

  • PDF

Multiple Response Optimization for Robust Design using Desirability Function

  • Kwon, Yong-Man;Hong, Yeon-Woong;Chang, Duk-Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.325-335
    • /
    • 2003
  • Robust design is to identify appropriate settings of control factors that make the system's performance robust to to changes in the noise factors that represent the source of variation. In the Taguchi parameter design, the product array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined array approach, was suggested by Welch et. al. (1990) and studied by others. In these studies, only single response variable was considered. We propose how to simultaneously optimize multiple responses when we use the combined array approach.

  • PDF

A Study on Multiple Response Optimization for Robust Design using Desirability Function

  • Kwon, Yong-Man;Chang, Duk-Joon;Hong, Yeon-Woong
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.65-75
    • /
    • 2003
  • In the Taguchi parameter design, the product array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined array approach, was suggested by Welch et. al. (1990) and studied by others. In these studies, only single response variable was considered. We propose how to simultaneously optimize multiple responses when we use the combined array approach.

  • PDF

A Study on Simultaneous Optimization of Multiple Quality Characteristics for Robust Design

  • Kwon, Yong Man
    • Journal of Korean Society for Quality Management
    • /
    • v.24 no.2
    • /
    • pp.142-157
    • /
    • 1996
  • Robust design in industry is an approach to reducing performance variation of quality characteristic values in products and processes. In the Taguchi type robust design, the product array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. In this paper, for the combined array approach to assign control and noise factors, we propose how to simultaneously optimize multiple quality characteristics. Two examples are illustrated to show the difference between the product-array approach and the combined-array approach.

  • PDF