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Abstract

Robust design in industry is an approach to reducing performance variation of
quality characteristic values in products and processes. In the Taguchi type
robust design, the product array approach using orthogonal arrays is mainly used.
However, it often requires an excessive number of experiments. In this paper, for
the combined array approach to assign control and noise factors, we propose how
to simultaneously optimize multiple quality characteristics. Two examples are
illustrated to show the difference between the product-array approach and the
combined-array approach.

1. Introduction

Products and their manufacturing processes are influenced both by control
factors that can be controlled by designers and by noise factors that are difficult
or expensive to control such as environmental conditions, properties of raw
materials, and product aging. The basic idea of robust design is to identify,
through exploiting interactions between control factors and noise factors,
appropriate settings of control factors that make the system’s performance robust
to changes in the noise factors. Robust design{or Parameter design in a narrow
sense) is a quality improvement technique proposed by the Japanese quality
expert Taguchi (1978), which was described by Taguchi (1986, 1987), Kackar
(1985), and others.

A large number of experimental trials in Taguchi’'s product array may be
required because the noise array is repeated for every row in the control array.
There have been efforts for integrating Taguchi’s important notion of
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heterogeneous variability with the standard experimental design and modeling
technology provided by response surface methodology(RSM). They combined
control and noise factors in a single design matrix, which we call a “combined
array’ .

Welch, Yu, Kang, and Sacks (1990) first proposec the combined array approach.
The initial motivation of the combined array is the run-size saving. Related
approaches were discussed by Vining and Myers (1990), Box and Jones (1992),
Shoemaker, Tsui and Wu (1991), and Myers, Khuri and Vining (1992), etc.
Treatment of the mean and variance responses via a constrained optimization was
discussed in Vining and Myers (1990).

The combined—-array approach allows one to provide separate estimates for the
mean response(or quality—characteristic) and for the variance(or variation)
response. Accordingly, we can apply the primary goal of the Taguchi method
which is to minimize the variance while constraining the mean, within a RSM.

2. Simultaneous Optimization of Multiple Quality
Characteristics

2.1 Estimated Mean and Variance Models

Box and Jones (1992) modeled the mean and variance separately in a single
response. But, we are interested in showing the estimated mean and variance
response models in multiple responses(or quality characteristics).

Suppose the response v, depends on control variables (or factors) and noise
variables. Let a set of control variables be denoted by x= (x,,x9,-*,x)  and a

set of noise variables by z=1(z, 2, ",2,,) . Suppose that all response functions

in a multiresponse system depend on the same sct of x and 2 and that they
can be represented by second order models within a certain region of interest. Let
N be the number of experimental runs and #» be the number of response
functions. The th second order model is

vi(x,2)=8s+x Bi+xBix+z2 Rz+z2 yv+zZDx+te, :=1,2,-,7, (21

where B; is Ix1, y; is mx1, B/=B;is IxI R/=R; is mxm, D; is
Ixm, which are vectors or matrices of unknown regression parameters, and ¢g;

is a random error associated with the ith response.
Equation (2.1) can be expressed in matrix notation as



144 o 34993 AN A2E 19969 64

vi=X 0;+ €, i=1,2,, 7, 2.2)

in which y; is an NX1 vector of observations on the ith response, X is un

4;

Nxp full column rank matrix of known constants, is the px1 column vector
of unknown regression parameters, and g&; is a vector of random errcrs

associated with the ith response. We also assume that
E( )=, Var( e)= o0y, Co g;, g)=04dy 1,j=1,2,,7, i=*].

The #X7 matrix whose (7, 7)th element is o¢; will be denoted by X The #

equations given in (2.2) may be written in a compact form

fwy (X0 0 Lo} £
LY v 0 0 - XTI 8, &

where y is »NX1, Z is rvNxrp, 6 is #px1l, and €& is #»Nx1. The

variance-covariance matrix of & is
Varle)=3QI =0,

where & is a symbol for the direct (or Kronecker) product of matri‘ces.
The BLUE (best linear unbiased estimator) of 8 in (2.3) is

9 =z 'z ety
=(Z'2)7'7'y.

where 8,=(X 'X)7'X’ y; is the least squares estimator of the px1 vector of

regression coefficients for the ith response model. The prediction equation for the
ith response is given by

vilx, 2=g(x 2 8, i=1.2, 7 21

where (x',2") is the vector of coded input variables, g (x, z) is a vector of
the same form as a row of the matrix X evaluated at the point (x, 2).
The fitted ith second-order model in (2.4) can be rewritten as
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vi(x,2)=by+ ¥ b;tx Bixtz Riz+z r+z Dix, i=12,7

The noise variables 2z are not controllable and random variables. In the absence

of other knowledge, z would be usually uniformly distributed over R,.

Let 7;1\,'(&) be the ith estimated mean response at an x averaged over the

noise variables
mi(x)= fR vilx, 2)p(2)dz, i=1,2,,7,

where p(z) is a probability density function of 2z, and 2z has a uniform
distribution over R, Box and Jones (1992) showed that the ith estimated mean

becomes

m;(x) = bot+x bi+x E,-&ﬁL% r R, i=1,2,-7r, (2.5)

where {r f?\i is the trace of the matrix f\’\z-. Let us write 5,-(9_6) for the ith mean

square variation about the ith mean response

(0= [ (3i(x,2)= M) o2)dz, i=12,7. (26)
Let us call this measure the rth estimated variance, which becomes

v, (x)= %‘( v+ D)’ v+ Dix)+ A;,  i=1,2,,7, 2.7)
where A, =[4Z7,( #¥;)? + 5275020 ( #)?1/45  and 7'y is the jth row

and kth column element of the matrix 2,

2.2 Py Measure

In this section, we propose the simultaneous-optimization measure of multiple
responses(quality characteristics) for robust design in a combined array.

If we have a prior knowledge about the estimated mean response m(x), it is
possible to minimize the estimated variance response while constraining the
estimated mean response. Let

0 (x)— MM 5 (%)
/wﬁ( )~ ? QQQRX _1 2 )
TR Tma sy min sy T
xR, % x=R, T

where Z;,-(J_C) is the 7th mean square variation about the ¢th mean response
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which is in (2.6) Note that z?f(g_q) is a “standardized” measure of v;(x). The

proposed simultaneous optimization measure can be written as

Min _ Mn b _ Min & o . .
per Pvg)= [Cp w2 ()= g 2w v (x),  i=1,2,,0
mus m;(x)<m: :nominal —is—best
subject to | m;(x)=>m;, : larger —the —better
m,(x)<m; : smaller —the —better
where  w=(wy, wy, ", w,), (=0 0 (x), v (D, 2, (») 1.
3%, w;=1, m, is the minimum acceptable value of m,(x), and m; is the

maximum acceptable  value of fr;,»(&).

The region R determines the set of x's that will be considered as possilile
locations of the optimum operating conditions The user of the simultaneous
optimization measure may choose R, as he wishes. Side conditions on the levels
of the responses (such as lower and upper bounds on several responses, that s

the acceptable value of ;{x) or m;(x)) can be easily incorporated.

3. A Comparative Study : Combined-Array Approach
Versus Product-Array Approach

In this section, we will compare the simultaneous-optimization procedure using
a Taguchi's product array with using a combined array that was proposed by

Py measure.

3.1 Product-Array Approach

Suppose that the objective is to find the simultaneous optimum conditions tor
increasing the strength of plastic product and reducing the wear on the plasiic
product. Suppose there are three control factors A, B, and C which arc
assigned to an orthogonal array, ng(Zl ><37). Interactions among three factors
are partially confounded a little in cach of the remaining columns. Therefore, it 3¢
not recommanded to use this arrav for experiments where interactions :ire
necessary. Also suppose there is a noise factor N with  three levels( Ny @ gox

condition, N, © normal condition, N3 @ bad condition). The control factors arc
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listed in <Table 3.1>, <Table 3.2> gives a set of hypothetical strength data 3y,
and wear data y,.
<Table 3.1) Factors and Levels

Control factor 0 level 1 level 2 level
A ' time (min) 120 125 130
B : temperature (T) 60 70 80
C : stir speed (rpm) 700 800 900

Suppose that quality characteristics for v, and y, are the “larger-the-better”

characteristics and the “smaller-the-better” characteristics, respectively. We can
calculate SN ratios rom replication at each experimental condition as follows : (1)

In the case of larger-the-better : SN;= —10log 1,(2%-,1/3y%) — 35, (2) In the
case of smaller-the better : SN;= —101log o[ 2,34/ 1+ 25

{Table 3.2 Assignment of Source and Data in the Product Array

Source | e A B C e e e e[ k%1 V3
RU;;\.#CQI 1 ‘ 3 4 5 6 7 8N Vi _ No| SN | No| Ni| N2l SN
1 -1 -1 -1 -1 -1 -1 -1 -1/45|49]52[-1.30| 30| 25| 18]-2.90
2 -1 -1 0 0 0 0 0 0]65]64]60 097151110 3.28
3 -1 -1 1 1 1 1 1 1]73/69]75]217 29|31 22|-382
4 1 0 -1 -1 0 0 1 1|63]/60(691108] 8[14] 111|396
5 -1 0 0 0 1 1 -1 -1|55(56|49-051| 9| 7 15| 427
6 -1 0 1 1 -1 -1 0 0]68]72|72(197|19|17, 12| 077
7 1 1 -1 0 -1 1 0 1/62/66/61]097] 9/12 5[579
8 -1 1 0 1 0 -1 1 -1!55 49| 56/-051] 14| 20| 17| 0.30
9 -1 1 1 -1 1 0 -1 0]74/80|74 260 8|15|17| 215
10 1 -1 -1 1 1 0 0 -1]69[55]66]091]25]29] 28/-3.75
11 1 -1 0 -1 -1 1 1 0/]57 52]44-1.0019{19] 13, 027
12 |1 -1 1 0 0 -1 -1 1787668 234|12|15 14 225
13 1 0 -1 0 1 -1 1 0150/52]56/~060] 9]12] 8]5.16
14 1 0 0 1 -1 0 -1 1.5, 45|46|-153]15] 22| 23,-1.16
15 1 0 1 -1 0 1 0 -1,66|75,69|187]12|13]| 8] 401
16 1 1 -1 1 0 1 -1 0]56|51]591-019]18] 25| 23-1.93
17 1 1 0 1 1 -1 0 1,350|45]48-146 11|19 13| 164
18 1 1 1 0 -1 0 1 -1 73|67/ 76]211[11| 710|546
SUM 9.89 25.75 |
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From the analysis of variance({ANOVA) tables, <Table 3.3> and <Table 3.4.-,

only B(temperature) is very significant for the data y,, and the main effects of
Al(time) and C(stir speed) are very significant for the data ys. One can find the

simultaneous optunum conditions, A;B,C;(125 min, 8 T, 800 rpm) 1y

summarizing the results of all the data as shown in <Table 3.5>.

(Table 3.3) ANOVA (SN for Strength) (Table 3.4) ANOVA (SN for Wear)

Source S f 14 Fy Source S b |14 F,
A 0.29 2 0.15 0.20 A 44.96 2 2250 1585”7
B 25.84 2 1292 17467 B 1.68 2 0.84 0.59
C 107 2 054 073 C 10688 2 5344 3763"
@ 810 12 0.74 e 1559 11 1.42
T 3530 17 T 16914 17
(Tabtle 3.5 Summarized Table of Factorial Effects
Source Level Sum of SN for ;| Sum of SN for y,| Optimum Level
A [0 (120 min) 4.09 -4.69 |
1 ¢ 125 min ) 228 17.01 O
2 ( 130 min ) 352 13.41
B 0 (60 C) 0.87 6.33
1070 C) ~-4.04 8.60
2(80 C) 13.06 10.82 O
C 0 ¢ 700 rpm ) 1.79 9.13
1 ¢ 800 rpm ) 5,28 26.21 O
2 (900 rpm ) 2.82 -9.59
3.2 Combined-Array Approach
The combined array consists of three control variables xj(or A), xs(or K.

and :x3(or () and one noise variable z (or N) which are assigned in the

orthogonal array, ng(21>137). In order to compare the product array approach
with the combine array approach, the data come from the combination for each
level of factors in a product arrav(see Table 3.2). From the results of ANOVA
for the data v, and v, in the product array approach, we see that interactions
between the control factors and the noise factor are not significant. Therefore, v ¢
do not consider nteractions between the control factors and the noise factor 'n
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the combined array approach. The combined array Lig(2' %37} is not used for

experiments where interactions exist. Table 3.6 is the case when the noise
variable is arranged in column 6.

(Table 3.6) Assignment of Sources and Data in the Combined Array

Source e X x93 X3 e 2 e e Data
R:n\a‘f 1 2 3 4 5 6 7 8 i v
1 -1 -1 -1 -1 -1 -1 -1 -1 45 30
2 -1 -1 0 0 0 0 0 0 64 11
3 | -1 -1 1 1 1 1 1 1 75 22
4 -1 0 -1 -1 0 0 1 1 60 14
5 -1 0 0 0 1 1 -1 -1 49 15
6 -1 0 1 1 -1 -1 0 0 68 19
7 -1 1 -1 0 -1 1 0 1 61 5
8 -1 1 0 1 0 -1 1 -1 55 14
9 -1 1 1 -1 1 0 -1 0 30 15
10 1 -1 -1 1 1 0 0 -1 55 29
11 1 -1 0 -1 -1 1 1 0 44 13
12 1 -1 1 0 0 -1 -1 1 78 12
13 1 ¢ -1 0 1 -1 1 0 50 9
14 1 0 0 1 -1 0 -1 1 45 22
15 1 0 1 -1 0 1 0 -1 69 8
16 1 1 -1 1 0 1 -1 59 23
17 1 1 06 -1 1 -1 0 1 50 11
18 11 1 0 -1 0 1 -1 67 7
i SUM 1074 216

The estimated response models by the method of least squares are given by

pi(x2)= 53.15-- 1.24x;+7.88x, — 0.87x3+ 6.28%% + 11.04x5 + 0.05x5 — 7.93x,x,
—3.12x%3 — 0.15x9x3— 1. 102+ 2.372x; + 1.462x5 — 3.402x3 —7.602*

vy (x,2)= 9.36 —3.78%, — 0.32x, +4.25x05 — 1.03x% — 1.5525 +8.91x% +5.77x1x,

+0.22x 23+ 0,303+ 0.772+ 2.982x, — 1.442x, + 4.502x5 + 2.892°

Using equations (2.f) and (2.7), the estimated mean and variance models are
given by
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mi(x) = 1.24% +7.88%,—0.87x3+6.28x% + 11.04x3 + 0.05x
—7.93x,x,— 3.12x1x3— 0. 15x925 +48.09,

my(x) = 3.78x—0.32x;+4.25x3— 1.03x% — 1.55x3 + 8.91x3
+5.77x1x5 +0.22x,03 + 0. 31 %9243 +12.30,

v1(x) = (2.37x;+ 1.46x, — 3.40x, — 1.10)%/3 +5.13,

v3(x) = (2.98x; — 1.44x, + 4.50x5 + 0.77)%/3+0.74.

The region of interest R, is given by the inequality —1<x;,xy,23<1. The
ranges for my(x), my(x), v1(x), and v,(x) are 47.38< m,(x) < 84.66,

0.00< my (x) < 32.22, 5.13 < 7,(x) < 28.26, and 0.74< 0,(x) <32.04,
respectively.

The results of the simultaneous optimization according to the Py measure are given in
<Table 37>, <lable 37> indicates that the optimal setting for n/z\l (x)=75 54,
my (£)<8.58, w;=0.1, and w,;=0.9is x=—0.72, 2,=1.0, and x3=0.02
which produces a predicted value of 7764, 855, 5.80, and 3.22 for iﬁl(‘gg_],

my(x), v, (%), and 0, (x), respectively.

(Table 3.7) Simultaneous Optimization for Py

Weigh‘;_ Location of Optima Simultaneous Optimum Value
w wy X x x| my(x) my(x) 0,(x) (%)
Subject to  m, (x)= 75.54, m,(x)< 8.58
01 09 =072 1.00 002 77.64 8.55 5.80 3.22
05 05 -0.58 100 -0.10 75.45 8.58 5.28 3.44
09 01 -052 100 -0.22 74.59 8.57 5.14 4.17
Subject to  m; (x)> 81.51, my(x)< 7.38
01 09 -1.00  1.00 -0.02 77.64 8.55 5.80 322
05 05 -096 1.00 -0.06 81.63 7.34 6.11 556
09 01 -1.00 1.00 -042 31.64 7.16 524  10.97
Subject to  m; (x)=> 77.51, m,(x)< 8.58
01 09 -1.00 1.00 -0.02 32.47 7.33 6.39 5.40
05 05 -094 100 -0.08 81.22 7.36 5.98 5.63
09 01 -0.88 1.00 -0.30 79.78 7.37 5.30 7.92
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s

3.3 Comparison of Results

From the results of Sections 3.1 - 3.2, we compare the results of the product
array approach with the combined array approach for the case of w,=10.5 (equal
weights), since the product array approach assumes equal weight for each
response. The simultaneous optimum condition of the product array approach is
ABCi(x1=0, 2;=1, x3=0), that is, 125 min, 80C, and 800 rpm. In the
case of combined-irray approach, the simultaneous optimum condition of the P,

measure is x;=—{).58, x9=1.00 and x3=-0.10(122.10 min, 80C, 790 rpm) and

SO on.

4. A Comparative Study for Two-Level Orthogonal Array
Design

In this section, we will study the simultaneous-optimization measure for two
level orthogonal array design. Also, in the case that interactions between the
control factors and the noise factors exist, we will compare the product-array

approach with the combined-array approach.

4.1 Product-Array Approach

We want to find the simultaneous optimum conditions for increasing the
strength of plastic product and reducing the wear on the plastic product.

The control factors are listed in <Table 4.1>. Suppose there are five contro!
factors A, B, C D, and F which are assigned to an orthogonal array,

Ls(2%). Also suppose there is a noise factor N with two levels ( Ny : normal

condition, N; . bad condition ).

{(Table 4.1) Factors and Levels

Control factor 0 level 1 level
A . plasticity time (min) 120 130
B : plasticity temperature (C) 70 80
C : cooling temperature (C) -20 -15
D quantity of additive (%) 5 10
F . stir speed (rpm) 300 900
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<Table 4.2>> gives a set of hypothetical strength data y; and wear data ..
From the results of ANOVA for the data ¥; and ., we see that interactions
between the control factors and the noise factor, that is, AXN of vy, and BXN
of y, are significant.

We can calculate SN ratios as follows:

(1) In the case of larger-the-better : SN; = —1(0log 10(2‘,3-51]/331?,-)— 30,

(2) In the case «f smaller-the-better : SN, = -101log o[ 23-,(3%/3)1+ 35

{Table 4.2) Assignment of Source and Data in the Product Array

Source| e A B C e e e e Vi E%)
Col o ‘ ‘
1 2 3 4 5 6 7 8 | No| Ni| Na| SN| Nyl Ni| N2l SN
Run™# :
1 -1 -1 -1 -1 -1 -1 -1 -1|45|49|52|-1.30|30]| 25| 18{-2.90
2 -1 -1 0 0 O O 0 0/65164,60,097|15; 11| 10| 3.28
3 -1 -1 1 1 1 1 1 1]73|69]|75217]29]|31]22 _3’82i
4 -1 0 -1 -1 0 0 11636069108 8|14/ 11] 3.96
5 -1 0 0 1 -1 ~1|550536]49|-051| 9| 7115|427
6 -1 0 1 1 -1 -1 0 0|68, 72 72/197|19|17| 12| 077

- L :
7 -1 1 -1 0 -1 1 0 1|62(66/ 61 097 9/ 12, 5/579
8 |-1 1 0 1 0 -1 1 -1|55|49 56/-051|14(20 17/ 030
9 -1 1 1 -1 1 0 -1 0 74 80|74 260 815 17 215

+ ‘

10 1 -1 -1 1 1 0 0 -1!69|55/66 0981|25]29| 28|-3.75
11 1 -1 0 -1 -1 1 1 0575244 -1.00]19| 19| 13| 027
12 1 -1 1 0 0 -1 -1 1178176168 234112115 14| 2.25
13 1 0 -1 0 1 -1 1 0505256 -060 9|12 8| 516
14 1 0 1 -1 0 -1 1151|45]46/-153| 15| 22! 23|-1.16
15 1 ¢ 1 -1 0 1 0 -1 66‘2 751 69 1.87}. 1213 81 4.01

[
16 1 1 -1 1 0 1 -1 015  5H1]|59-019 18| 25| 23/-1.93
17 1 1 0 -1 1 -1 O 115045, 481-146] 11| 19! 13| 164
18 1 1 1 0 -1 0 1 -1 7367|761 211! 11 71 10 5.46
SUM 9.89 25.75
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(Table 4.3) ANOVA (SN for Strength) <(Table 4.4) ANOVA (SN for Wear)

Source S f |4 F, Source S f |4 Fy
A 37830 1 37830 1327”7 A 04658 1 04658 1.04
B 36290 1 36200 12737 B 21830 1 21830 487
C 7.1824 | 71824 25197 C 17490 1 17490 390
D 06400 1 06400 224 D 137456 1 137456 30.63"
F 0.0240 1 0.0240 0.08 F 133043 1 133043 2965
e 2.8514 10 0.2851 e 44805 10 0.4487
T 181148 15 T 3149342 15

From <Table 4.3.> and <Table 44>, we see that in the case of ¥, the main
effects of A, B and C are very significant and in the case of ¥, the main

effects of D and / are very significant and B is significant. One can find the
simultaneous optimum levels, AyB;CyDyF (120 min, 80T, 20T, 5%, 800 rpm)

by summarizing the results of all the data as shown in <Table 4.5>.

(Table 4.5) Summarized Table of Factorial Effects

Source Level Sumn of SN for y;[Sum of SN for y,| Optimum Level

A 0 (120 min ) 4762 4781 O
1 ( 130 min ) 39.84 45.08

B 0 (70 T 39.92 43.49
1 (80 C ) 47.54 49,40 O

C 0(-20 ) 49.09 43.40 O
1(-15 1) 38.37 49.49

D 0(5 %" 42.13 53.86 O
1 ( 10% 45.33 39.03

F 0 800 rpm ) 43.42 53.74 )
1 (900 rpm ) 44,04 39.15

4.2 Combined-Array Approach

Suppose that the control variables and noise variables {(x,2) can be
represented by a first-order model in the control variables and noise variables
with, in addition, cross-product terms between the control variables and the noise
variables.

The combined array consists of five control variables x; (or A), x, (or B),

x3 (or O), x4 (or D), and x5 (or F) and one noise variable z (or N) which
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are assigned in the orthogonal array, Lis(2”). In order to compare the produc:

array approach with the combined array approach, the data come from the
combination for cach level of factors in a product array (see Tables 4.2). For the
case that the noise variable is arranged in column 4, the results of assignmen:
are shown in Table 4.6. In the product array, interactions between the contro
factors and the noise factor, that is, AXN of y; and BXN of vy are

significant. Thercfore, we must consider interactions between the control factor:.
and the noise factor in the combined array.
The estimated response models by the method of least squares are given by

v1(x,2) = 60.00 —3.25x, +3.13xy — 4.25x3+ 1.38x, — 0.13x5 — 1.002
(4.1
—2.252x,—0.632x, — 2.252x3 — 0.882x, + 0. 132x5

(42
~(+.8lzx; — 1.812x9 — 0.442x5 + 0.312x, + 0.192%5

{Table 4.6> Assignment of Sources and Data in the Combined Array

Col Data
\\ 1 2 3 4 5 6 7 8§ 9 10 11 12 13 14 15 ’

Run ™ v | v
1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1159]23
2 -1 -r-1r -1 -1 -1 -1 1 1 1 1 1 1 1 1 [59] 30
3 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 |69 33
4 -1 -t -1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 |56]29
5 -1 1 1 -1-1 1 1 -1 -1 1 1 -1 -1 1 1 |69]|36
6 -1 1 1 -1 -1 1 1 1 1 1 -1 1 1 -1 -1 |61]2:
7 -1 11 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 |74] 30
2 -+ 1 1 1 -t -1 1 1 1 -1 -1 -1 1 1 |59f2>
9 1 - 11 - 1 -1 1 -r 1 1 1 -1 1 -1 1 601 3
10 1 -+ 1-1 1 -t 1 1 -1 1 -1 1 -1 1 -1 |51|l3%
11 1 -t 111 -1 1 -1 -1 1 1 1 1 -1 1 -1 |574
12 i -r 1 1r-1 1-1 1 -1 1-1 -1 1 -1 1 44| 26
13 1 +»-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 64| 3!
14 1 1 -t-r 1 1-1 1-1 1 1 1 -1 -1 1 65] 32
15 1 1r1-1 1 -1 -1 1-1 1 1 -1 1 -1 -1 1 |62f20
16 1 r-1 1-1 -1 1 1 -1 -1 1 -1 1 1 -1 |51|3]

basic a b ab ¢ ac bc abc d ad hd abd cd acd bed abed

mark - o

Source| x, x, e Z X2 X2 € X3 e ¢ X4 e € X5 e
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From (4.1) and (4.2). the estimated mean and variance models are given by

my(x) = —3.25%,+3.13x, — 4.25x, + 1.38x, — 0. 13x5 + 60.00,
my(x) = 0.942, —1.06x, — 1.19x3 + 3.06x, + 2.94x5 +29.31
o1(x) = ( —2.25%,— 0.63x, — 2.25x; — 0.88x, +0.13x; — 1.00)%/ 3,
vs(x) = ( —0.81x,— 1.81x, — 0.44x5 + 0.31x, +0.19x5 +0.06)%/ 3.

The results of simultaneous optimization according to the P, measure are

given in <Table 4.7>.

(Table 4.7> Simultaneous Optimization under Py

Weight : Location of Optima Simultaneous Optimum Value
w Wy X1 X2 X3 X4 Xj 771\1(26_) 7;’1\2(3_6) 51(&) 52(&)
Subject to  me; (x)= 68.00, e, (x)< 24.00
01 09 ~-1.0 0.6 -09 -0.7 -1.0 68.12 2372 3.82 0.02
03 07 -1.0 0.8 -0.7 -05 -1.0 68.17 23.89 2.31 0.13
05 05 -1.0 09 -06 -04 1.0 68.20 2397 1.70 0.22
07 03 -1.0 1.0 -05 -04 -1.0 68.08 23.74 1.29 0.36
09 01 -1.0 1.0 -05 -04 -1.0 63.08 23.74 1.29 0.36
Subject to  me; (x)= 69.00, 5 (x)< 23.00
01 09 -1.0 09 -10 -09 -1.0 69.21 2291 4.31 0.21
03 07 -1.0 09 -1.0 -09 -1.0 69.21 2291 4.31 0.21
05 05 -1.0 1.0 -09 -08 ~1.0 69.23 22,99 3.45 0.32
07 03 -1.0 1.0 -09 -0.8 ~1.0 69.23 2299 3.45 0.32
09 0.1 -1.0 1.0 -0.9 -0.8 ~1.0 69.23 22.99 3.45 0.32
Subject to  m2; (x)= 66.00, m,(x)< 26.00
0.1 09 -1.0 05 -02 02 -1.0 66.07 2575 0.39 0.00
03 07 -1.0 06 -01 03 -1.0 66.10 2883 0.17 0.02
05 05 -1.0 06 -01 03 -1.0 66.10  28.83 0.17 0.02
07 03 ~1.0 07 00 04 -10 66.12 2591 0.04 0.07
09 01 ~-1.0 08 0.1 05 -1.0 66.15 2599 0.00 0.14

4.3 Comparison of Results
From the results of Sections 41 and 4.2, for w;=0.5 (equal weights) the

simultaneous optimum condition of the product array approach is AB,CoDyFy
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(x,=—1.0, x,=:1.0, x3=—1.0, x4=—1.0, x5=-1.0), that is, 120 min, 80T
-207C, 5%, and &0 rpm (see Table 4.5). In the case of combined array approach
the simultaneous optimum conditions of the P, measure are almost the same as

the case of product array approach, and so on (see <Table 4.7>).

5. Concluding Remarks

The product array approach does not consider empirical modeling between a
response variable and several control factors, and it selects only the simultaneous
optimal levels of the concerned factors. However, the combined array approach
considers empirical modeling, usually a second order response model, and 1t
selects the simultaneous optimal conditions of the concerned control factors in the
region of interest through the fitted empirical model. When there are multiple
quality -characteristics(responses), it is obvious that selecting optimal conditions of
the control factors in their region of interest is more desirable than selecting
optimal levels among given levels of experiment.

In the combined array approach, an experimental design and analysis can he
regarded as a stage of a sequential investigation where the investigator uses the
information gained from each stage of experimentation. However, the produ:t
array approach does not usually consider the sequential experiment. In these
points of view, we can judge that the combined array approach is better than the
product array approach.
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