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1. Introduction
1

Products and their manufacturing processes are 
influenced both by control factors that can be controlled 
by designers and by noise factors that are difficult or 
expensive to control such as environmental conditions. 
The basic idea of robust design is to identify, through 
exploiting interactions between control factors and noise 
factors, appropriate settings of control factors that make 
the system's performance robust to changes in the noise 
factors. Robust design(or Parameter design in a narrow 
sense) is a quality improvement technique proposed by 
the Japanese quality expert Taguchi, which was 
described by Taguchi[1,2], Kackar[3], and others.

In the Taguchi parameter design, the control factors 
are assigned to an “inner array”, which is an orthogonal 
array. For each row in the inner array, the noise factors 
are assigned to an “outer array”, also an orthogonal array. 
Because the outer array is run for every row in the inner 
array, we call this setup a “product array”. A large 
number of experimental trials in Taguchi's product array 
may be required because the noise array is repeated for 
every row in the control array. 

Department of Computer Science and Statistics, Chosun University, Gwangju 
501-759, Korea

Corresponding author : ymkwon@chosun.ac.kr
(Received: January 21, 2017, Revised: March 17, 2017,
 Accepted: March 25, 2017)

 There have been efforts for integrating Taguchi’s 
important notion of heterogeneous variability the 
standard experimental design and modeling technology 
provided by response surface methodology. They 
combined control and noise factors in a single design 
matrix, which we call a combined array. The combined 
array approach was first proposed by Welch, Yu, Kang, 
and Sacks[4]. The initial motivation of the combined array 
is the run-size saving. Related approaches were discussed 
by Vining and Myers[5], Box and Jones[6], Shoemaker, 
Tsui and Wu[7], and Myers, Khuri and Vining[8], etc. 
Treatment of the mean and variance responses via a 
constrained optimization was discussed in Vining and 
Myers[5]. 

In many experimental situations, a number of 
responses are measured for a given setting of design 
variables. Khuri and Conlon[9] introduced a procedure for 
the simultaneous optimization of multiple responses 
using a distance function.

The combined-array approach allows one to provide 
separate estimates for the mean response and for the 
variance response. Accordingly, we can apply the 
primary goal of the Taguchi method which is to 
minimize the variance while constraining the mean. In 
this paper, we propose how to simultaneously optimize 
multiple responses for robust design when data are 
collected from a combined array. An example is 
illustrated to show the proposed method.
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2. Simultaneous Optimization of 
Multiresponse

2.1. Multivariate Linear Model
Suppose the response , depends on control variables 

(or factors) and noise variables. Let a set of control 
variables be denoted by  and a set of 
noise variables by  . Suppose that all 
response functions in a multiresponse system depend on 
the same set of  and  and that they can be represented 
by second order models within a certain region of 
interest. Let  be the number of experimental runs and  
be the number of response functions. The th second 
order model is

(1)

where  is ,  is ,  is , 
 is ,  is , which are vectors or 

matrices of unknown regression parameters, and  is a 
random error associated with the ith response.

Equation (1) can be expressed in matrix notation as

  (2) 

in which  is an  vector of observations on the ith 
response,  is an  full column rank matrix of 
known constants,  is the  column vector of 
unknown regression parameters, and  is a vector of 
random errors associated with the ith response. We also 
assume that

 

The  matrix whose th element is  will be 
denoted by . An unbiased estimator of  is given by 

, 

where , and  is an identity matrix of 
order . The  equations given in (2) may be 
written in a compact form

  (3)

where  is ,  is  ,  is , and  is 
. The variance-covariance matrix of  is

, 

where  is a symbol for the direct (or Kronecker) 
product of matrices.

The BLUE (best linear unbiased estimator) of  in (3) 
is

. 

Thus, the BLUE of  is  

where  is the least squares estimator 

of the  vector of regression coefficients for the ith 
response model[10]. The variance-covariance of 

 .

The prediction equation for the ith response is given 
by

 
 (4)

where  is the vector of coded input variables, 
 is a vector of the same form as a row of the 

matrix  evaluated at the point . From (4) it 
follows that

 
 

Hence,
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where  is the 
vector of predicted responses at the point . An 
unbiased estimator of  is given by

 
.

2.2 Estimated Mean and Variance Models in a 
Multiresponse

Box and Jones[6] modeled the mean and variance 
separately in a single response. But, we are interested in 
showing the estimated mean and variance response 
models in multiple responses.

The fitted ith second-order model in (4) can be 
rewritten as

 
 

The noise variables  are not controllable and they are 
random variables. In the absence of other knowledge,  
would be usually uniformly distributed over .

 Let  ith estimated mean response at an  
averaged over the noise variables

 

where  is a probability density function of , and  
has a uniform distribution over (  ). Box 
and Jones[6] showed that the ith estimated mean 
becomes

  (5) 

where  is the trace of the matrix . Let us write 
 for the ith mean square variation about the ith 

mean response 
 

 

Let us call this measure the ith estimated variance, 
which becomes

 (6)

where  
and  is the th row and th column element of the 
matrix .

From (2.5) the ith estimated mean can be rewritten as

(7) 

where  
 and  

is a part of . From the fact that 

 is a part of , the variance-covariance of  is 

given by
 

 , 

where  ,  is , and 

 is , where , 
and . Here  is the 

 submatrix of . From (7) and above, we 
then have

  

where  is the 
vector of estimated mean responces at the point . An 
unbiased estimator of  is given by 

 
. (8)

2.3. The Proposed  measure about the 
estimated mean responses

Let us find conditions on a set of control variables  
which optimize a set of estimated mean responses 

 subject to maintaining estimated variance 
responses  within some specified upper bounds. If 
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all the estimated mean  attain their individual 
optimum values  at the same set  of operating 
conditions, then the problem of simultaneous 
optimization is obviously solved. This ideal optimum 
rarely occurs. In more general situations we might 
consider finding compromising conditions on the control 
variables that are somewhat favorable to all mean 
responses. Such deviation of the compromising 
conditions from the ideal optimum condition can be 
evalulated by means of a distance function which 
measures the distance of , from .

 Let  be the optimum (or target) value of  
over  and let  . We shall consider a 
constrained-optimization procedure for each response 
according to the Taguchi's three basic situations as 
follows.

1. “nominal-is-best characteristics”: target value of 
 , 

2. “larger-the-better characteristics”:
 ,

3. “smaller-the-better characteristics”: 
 .

 A distance function of  for the target value  
may be expressed as

 

Using the estimate given in (8) for the 
variance-covariance matrix of , we get a distance 
function

  (9)

If the mean response  takes on different 
degrees of importance, we can imply weights 

 where  for each i and 
 . Then the distance function can be written 

as

 

(2.9)

where . From the constrained- 

optimization procedure and the distance
From the distance measure of  for the target 

value , we propose a simultaneous optimization of 
 over the region of interest . From (9), the 

proposed simultaneous-optimization measure about the 
estimated mean responces can be written as

 =

 

(10)
 
The  measure can be used without a prior 

knowledge about the estimated mean responses. It takes 
into consideration the variances and correlations of the 
estimated mean responses.

2.4. The Proposed  Measure About the 
Estimated Variance Responses

In this section, we propose the simultaneous- 
optimization measure of multiple responses(quality 
characteristics) for robust design in a combined array.

If we have a prior knowledge about the estimated 
mean response , it is possible to minimize the 
estimated variance response. Let

 

where  is the th mean square variation about the 

th mean response which is in (6). Note that  is a 
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“standardized” measure of . The proposed 
simultaneous optimization measure about the estimated 
variance responces can be written as

 =

 (11)

where ,  
,  . If the variance response  

takes on different degrees of importance, we can imply 
weights  where  for each i and 

 . 

2.5. The Proposed Simultaneous-Optimization  
Measure

Let us find conditions on a set of control variables  
which optimize simultaneously for a set of estimated 
mean responses and estimated variance responses. If all 
the estimated mean and all the estimated variance attain 
their individual optimum values at the same set  of 
operating conditions, then the problem of simultaneous 
optimization is obviously solved. This ideal optimum 
rarely occurs. In more general situations we might 
consider finding compromising conditions on the control 
variables that are somewhat favorable to all mean 
responses and all the estimated variance. Such deviation 
of the compromising conditions from the ideal optimum 
condition can be formulated by means of the desirability 
function.

We propose a simultaneous optimization for a set of 
estimated mean responses and estimated variance 
responses over the region of interest  using proposed 

 and . From Equations (10) and (11), the 
proposed simultaneous-optimization measure can be 
written as

 (12)

where  is the region of interest on a set of control 
variables  and  . This is a criterion in which 

 and  take on different degrees of 
importance.

As a way of finding the optimal solution of the control 
factors according to the proposed formula, genetic 
algorithm was used in the MATLAB Optimization 
Toolbox.

3. Numerical Example

In this section we give a numerical example, 
consisting of a multiresponse system of two response 
variables,  and , and two control variables,  and 

, and a noise variable . The design is somewhat 
similar to the standard central composite design. The 
cube portion of the experimental arrangement is chosen 
to be a  design and star points are added only for the 
two control variables. The following Table 1 gives the 
factor levels and a set of data. 

Each of the two responses was fitted to a second order 
regression model. The estimated response models by the 
method of least squares are given by

 
 

(13)
 

 

(14)

From (13) and (14), using the mean and variance 
response equation (5) and (6), the estimated mean and 
variance response models are given by 

 

 

 

The region of interest  is given by the inequality 
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 . The ranges for , , 
 and  over  are, respectively, 

, , 
 and .

Suppose that the quality characteristics for  and  
are the nominal-is-best characteristics and the 
larger-the-better characteristics. Let us assume that the 
target value of  is taken to be 75.00 and the target 
value of  is taken to be . 

From (12), we obtained the results of simultaneous 
optimization based on the minimization of the  
measure over . Table 2 indicates that the optimal 
setting for the =0.1, = =1.00 is  and 

 , which produces a predicted value of 77.21, 
107.14, 4.00, and 4.45 for , , , and 

, respectively. 
If a simultaneous optimum value is much different 

from its corresponding individual optimum value, we 
may reoptimize . Also we may analyze  
sequentially as the acceptable values for  and weights 

 are varied. 

4. Conclusion 

The combined-array approach allows one to provide 
separate estimates for the mean response and for the 
variance response. Accordingly, we can apply the 
primary goal of the Taguchi methodology which is to 
obtain a target condition on the mean while achieving the 
variance, or to minimize the variance. In this study we 
proposed the simultaneous-optimization measure  of 
multiple responses. The proposed concept of  
measure is minimizing the deviation of the mean 
responses from the target values and also  measure is 
minimizing the deviation of the variance responses from 

Run 
1
2
3
4
5
6
7
8
9
10
11
12
13
14

 -1
 -1
 -1
 -1
 1
 1
 1
 1

 -1.41
 1.41

 0
 0
 0
 0

 -1
 -1
 1
 1
 -1
 -1
 1
 1
 0
 0

 -1.41
 1.41

 0
 0 

 -1
 1
 -1
 1
 -1
 1
 -1
 1
 0
 0
 0
 0
 0
 0

80.6
74.9
83.1
71.2
66.8
74.2
38.1
36.8
80.9
42.4
73.4
45.0
77.4
74.6

 81.4
 95.9
 105.0
 103.0
 74.0
 76.8
 81.2
 76.9
 100.0
 50.5
 71.2
 101.0
 102.0
 104.0

Table 1. Experimental design and response values

Weight  Location of optima  Simultaneous optima

0.10
0.30
0.50
0.70
0.90

 -0.10
 -0.07
 -0.05
 -0.03
 -0.01

 0.18
 0.21
 0.27
 0.29
 0.26

 77.21
 76.49
 75.46
 74.92
 75.03

 107.14
 106.94
 106.88
 106.68
 106.37

 4.00
 3.95
 4.03
 4.00
 3.84

 4.45
 4.62
 4.90
 5.04
 4.96

Table 2. Simultaneous optimization for 
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the target values of the variance responses that is 
minimum values of the variance responses. The  
measure is easy to apply, and permits the user to make 
subjective judgements on the importance of each 
response. 

 In this study we assume that the noise variables 
would be uniformly distributed over the region of interest 
of noise variables. It will be of interest to consider the 
case when the noise variables are not uniformly 
distributed over the region of interest of noise variables.
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