• Title/Summary/Keyword: Color gamut mapping

Search Result 52, Processing Time 0.026 seconds

Gamut Mapping Using Variable Anchor Points for Continuous Color Reproduction between Devices (장치간 연속 색 재현을 위한 가변 닻점 방식의 색역 사상)

  • 이채수;윤태진;한찬호
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2001.05a
    • /
    • pp.300-310
    • /
    • 2001
  • In this paper, new gamut-mapping algorithm (GMA) that utilizes variable anchor points (center of gravity on the luminance axis) is proposed. The proposed algorithm increases luminance range, which is reduced from conventional gamut mapping toward an anchor point. In this process, this algorithm utilizes multiple anchor points with constant slopes to both reduce a sudden color change on the gamut boundary of the printer and to maintain a uniform color change during the mapping process. Accordingly, the proposed algorithm can reproduce high quality images with low-cost color devices.

  • PDF

Generation Method of Color Gamut Mapping Look-up Table Uniformly Selected in the CIELAB Color Space (CIELAB 색공간에서 균일한 분포를 갖는 색역사상 참조 테이블 생성 방법)

  • 오현수;이철희;곽한봉;서봉우;안석출
    • Journal of Korea Multimedia Society
    • /
    • v.4 no.4
    • /
    • pp.316-323
    • /
    • 2001
  • Gamut mapping is a technique that acts on cross-media color reproduction to transform a color between devices for the purpose of enhancing the appearance or preserving the appearance of an image. Gamut mapping essentially produces color conversion error which depends on the gamut mapping method, source and destination devices, and sample points for gamut modeling. For color space conversion between monitor colors and printer colors, empirical representation using sample measurements is currently widely utilized. Color samples are uniformly selected in the device space such as CMY or RGB, represented as color patches, and then measured. However, in the case of printer, these color samples are not evenly distributed inside the printer gamut and the color conversion error is increased. Accordingly, this paper introduces a equally distributed color sampling method in CIELAB space, a device- independent color space, to reduce color conversion error, and the performance is analyzed via color space conversion experiments using three-dimensional interpolation.

  • PDF

Hue Preserving Color Gamut Mapping (색조 보존을 위한 칼라 색역 매핑)

  • 성영모;박은홍;임재권
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.106-109
    • /
    • 2003
  • This paper presents a hue preserving gamut mapping algorithm for color monitor and printer. The gamuts of monitor and printer are set by the profile of color reproduction media, specified by ICC(International Color Consortium) and provided by vendors, then those gamuts are represented on the CIE xy color space. In case that the color of monitor are located on out-of-gamut of printer, these are clipped on the point of gamut boundary of printer towards a reference white point. On the other hand, colors are in-gamut of printer are unchanged. An image generated by the algorithm keeps a ratio of each pixel of original image. Advantages of the algorithm are easy to implement and fast processing time than other algorithms which involve hue preserving especially in CIELAB color space.

  • PDF

Color Discrimination Enhancement Gamut Mapping Using Color Distribution Rearrangement (색 분포 재배열을 이용한 색 분별력 향상 색역 사상)

  • Lee, Jae-Min;Kim, Kyeong-Man;Lee, Chae-Soo;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.58-71
    • /
    • 1999
  • When the same image is displayed in many different devices, the reproduced colors are not same due to the differences in the gamut between devices. Therefore, many gamut mapping method were proposed to solve this problem. In this paper, color discrimination enhancement gamut mapping method using color distribution rearrangement is proposed to reduce the unnecessary distortions by compression mapping and to minimize the decrease of color discrimination by clipping method. The proposed method constructs color distribution, the 3-dimension array of input image's colors. if the maximum of color distribution is within the boundary of printer gamut. the colors are mapped to the same colors. Otherwise, out-of-gamut colors are compressed into the printer gamut with minimum distortion. Consequently, the printer output image was highly consistent with the corresponding monitor image and had an enhanced color discrimination in region where high chroma varied linearly.

  • PDF

Color Gamut Mapping for Different Kinds of Display Devices (이종 디스플레이 장치간의 색역폭 사상)

  • Kwon, Do-Hyung;Lee, Hak-Sung;Kim, Kyung-Suk;Han, Dong-il
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.691-692
    • /
    • 2006
  • Generally many devices reproduce images in the various ways. Therefore many devices can reproduce restrict range of colors according to their device characters. And the restrict range of color is called as a color gamut. Owing to these color gamuts have the differences between devices, color gamut mapping is needed. In this paper, we attempted an experiment about a gamut mapping from a CRT monitor to a LCD monitor.

  • PDF

A Study on the New Gamut Mapping Method for Digital Color Proofing (디지털 컬러 교정인쇄를 위한 새로운 색역사상 방법에 관한 연구)

  • Song, Kyung-Chul;Kang, Sang-Hoon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.2
    • /
    • pp.119-129
    • /
    • 2002
  • On the process of cross-media color reproduction, a key feature is the use of gamut mapping techniques to adjust the different color gamuts between displays and printers. Even though a nunber of gamut mapping algorithms were published in the past, only limited colorimetric evaluation of them has been carried out to date. In this paper, the multi-anchor points clipping method(MAPC) was proposed as a new gamut mapping algorithm compensating the defects of the current algorithms such as nearest point clipping method(NPC), centroid clipping method(SLIN), straight clipping method(LLIN) and maximum chroma clipping method(CUSP).

  • PDF

Real-Time Color Gamut Mapping Method Based on the Three-Dimensional Difference Look-Up Table (3차원 차분 룩업 테이블을 이용한 실시간 색역 사상 기법)

  • Han, Dong-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.111-120
    • /
    • 2005
  • A cost effective three-dimensional color gamut mapping architecture is described. The conventional three-dimensional reduced resolution look-up table is considered and the concept of three-dimensional reduced resolution difference look-up table is introduced for cost effective and real-time color gamut mapping. The overall architecture uses one-dimensional memory decomposition of three-dimensional gamut mapping look-up table, three-dimensional interpolation and simple addition operation for generating the final gamut mapped colors. The required computational cost is greatly reduced by look-up table resolution adjustment and further reduced by the gamut mapping rule modification. The proposed architecture greatly reduces the required memory size and hardware complexity compared to the conventional method and it is suitable for real-time applications. The proposed hardware is suitable for FPGA and ASIC implementation and could be applied to the real-time display quality enhancement purposes.

Gamut Mapping Algorithm for Image Quality Enhancement (화질 향상을 위한 색역 사상)

  • 김재철;허태욱;조맹섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.251-254
    • /
    • 2002
  • Currently many devices reproduce electronic images in a variety of ways. However, the colors that are reproduced are different from the original color due to the differences in the gamut between devices. In this paper, a gamut mapping method utilizing a simultaneous mapping function and a lightness rescaling is proposed. This method enhance the local-color characteristics and lightness contrast. The experimental result shows that the overall contrast and the colorfulness were increased.

  • PDF

Gamut Mapping Based on Color Space Division for Enhancement of Lightness Contrast and Chrominance (휘도 대비와 채도 향상을 위한 색 공간 분할 색역 사상)

  • Cho, Yang-Ho;Kim, Yun-Tae;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.513-521
    • /
    • 2002
  • This paper proposes a gamut mapping algorithm based on color space division for cross media color reproduction. As each color device has a limited range of producible colors, reproduced colors on a destination device are different from those of the original device. In order to reduce the color difference, the proposed method divides the whole gamut into parabolic shapes based on intersecting lightness by the just noticeable difference (JND) and the original device gamut boundary. Dividing the gamut with parabolic shapes and piecewise mapping of each region not only considers gamut characteristics but also provides for mapping uniformity. Also the lightness variations are more sensitive to the human visual system and by using lightness JND it can restrict lightness mapping variations that are unperceivable to enhance lightness contrast and chrominance. As a result, the proposed algorithm is able to reproduce high quality images using low-cost color devices.

Gamut Mapping Using Variable Multiple Anchor Points for Continuous-Tone Color Reproduction (연속계조 칼라재현을 위한 가변 다중 닻점을 이용한 색역 사상)

  • Lee, Chae-Su;Lee, Cheol-Hui;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.55-64
    • /
    • 1999
  • In this paper, new gamut-mapping algorithm (GMA) that utilizes variable anchor points (center of gravity on the luminance axis) is proposed. The proposed algorithm increases luminance range, which is reduced from conventional gamut mapping toward an anchor point. In this process, this algorithm utilizes multiple anchor points with constant slopes to both reduce a sudden color change on the gamut boundary of the printer and to maintain a uniform color change during the mapping process. Accordingly, the proposed algorithm can reproduce high quality images with low-cost color devices.

  • PDF