• 제목/요약/키워드: Colloidal Particles

검색결과 278건 처리시간 0.022초

Reorientation of Colloidal Crystalline Domains by a Thinning Meniscus

  • Im, Sang-Hyuk;Park, O-Ok
    • Macromolecular Research
    • /
    • 제12권2호
    • /
    • pp.189-194
    • /
    • 2004
  • When water is evaporated quickly from a water-based colloidal suspension, colloidal particles protrude from the water surface, distorting it and generating lateral capillary forces between the colloidal particles. The protruded colloidal particles are then assembled into ordered colloidal crystalline domains that float on the water surface on account of their having a lower effective density than water. These colloidal crystal domains then assemble together by lateral capillary force and convective flow; the generated colloidal crystal has grain boundaries. The single domain size of the colloidal crystal could be controlled, to some extent, by changing the rate of water evaporation, but it seems very difficult to fabricate a single crystal over a large area of the water's surface without reorienting each colloidal crystal domain. To reorient such colloidal crystal domains, a glass plate was dipped into the colloidal suspension at a tilted angle because the meniscus (airwaterglass plate interface) is pinned and thinned by further water evaporation. The thinning meniscus generated a shear force and reoriented the colloidal crystalline domains into a single domain.

실리카 함유 콜로이달 분무용액으로부터 합성된 BAM:Mn 형광체 (BAM:Mn Phosphor Prepared from Spray Solution with Colloidal Silica)

  • 주서희;구혜영;홍승권;김도엽;강윤찬
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.123-128
    • /
    • 2006
  • [ $BaMgAl_{10}O_{19}:Mn^{2+}$ ](BAM:Mn) phosphor particles with spherical shape were prepared by spray pyrolysis from colloidal solution with silica. The phosphor particles prepared by spray pyrolysis from aqueous solution had irregular morphology after high temperature post-treatment. On the other hand, the phosphor particles prepared from spray solution with colloidal silica had spherical shape after post-treatment. Colloidal silica used as additive improved the spherical shape and filled morphology of the precursor particles prepared by spray pyrolysis. The precursor particles with filled structure produced the BAM:Mn phosphor particles with spherical shape and non-aggregation characteristics after post-treatment at $1400^{\circ}C$ under reducing atmosphere. The phosphor particles prepared from colloidal solutions formed the crystal structure of BAM:Mn phosphor irrespective of the silica contents. The BAM:Mn phosphor particles prepared from aqueous and colloidal solutions had similar photoluminescence intensities under vacuum ultraviolet.

Fabrication of 50 to 1000 nm Monodisperse ZnS Colloids

  • Chae, Weon-Sik;Kershner, Ryan J.;Braun, Paul V.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.129-132
    • /
    • 2009
  • Monodisperse ZnS colloidal particles with precisely specified diameters over a broad size range were synthesized by controlled aggregation. Sub-10nm ZnS seed crystals were first nucleated at ambient temperature and then grown at an elevated temperature, which produced large polydisperse colloidal particles. Subsequent rapid thermal quenching and heating processes induced a number of secondary nucleations in addition to growing the large polydisperse microparticles which were finally removed by centrifugation and discarded at the completion of the reaction. The secondary nuclei were then aggregated further at elevated temperatures, resulting in colloidal particles which exhibited a nearly monodisperse size distribution. Particle diameters were controlled over a wide size range from 50 nm to 1 μm. Mie simulations of the experiment extinction spectra determined that the volume fraction of the ZnS is 0.66 in an aggregated colloidal particle and the colloidal particle effective refractive index is approximately 2.0 at 590 nm in water. The surface of the colloidal particles was subsequently coated with silica to produce ZnS@silica core-shell particles.

나노 다공성 입자의 콜로이드 서스펜션을 이용한 기계적 감쇠기구에 대한 연구 (Study on Mechanism of Mechanical Damping System Based on The Colloidal Suspension of Nano-Porous Particles)

  • W.J, Song;Kim, J.;B.Y. Moon;B.S. Kang
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 추계학술대회논문집
    • /
    • pp.359-362
    • /
    • 2003
  • Damping systems have been widely used to various industrial structures and are mainly hydraulic and pneumatic devices nowadays. In this work, a novel damping system based on the colloidal suspension in the field of nanotechnology is investigated. The colloidal suspension consists of Iyophobic working fluid and hydrophobic-coated porous particle. The mechanism of mechanical energy dissipation in damping system based on the colloidal suspension with nano-porous particles is different from that of the existing hydraulic damping system. The absorbed energy of the damping system using colloidal suspension can be calculated through the mechanical equilibrium condition by the superficial tensions of liquid-gas Interface in the hydrophobic surface in nano-porous particles. The results from an analytic approach have a reasonable agreement with experimental results.

  • PDF

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang;Kim, Tae-Yeol;Yi, Gi-Ra;Kim, Young-Kuk;Choi, Chul-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.159-166
    • /
    • 2012
  • We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.

수열합성법에 의한 Zinc Selenide 나노 분말 합성 및 미세구조 특성 연구 (Fabrication and Characterization of Nano-Sized ZnSe Powders by Hydrothermal Process)

  • 김미소;홍현선
    • 한국재료학회지
    • /
    • 제27권9호
    • /
    • pp.459-465
    • /
    • 2017
  • Nano-sized Zinc selenide (ZnSe) powder was successfully synthesized using Zn and Se precursors in a hydrothermal process. Temperature for the synthesis was varied from $95^{\circ}C$ to $180^{\circ}C$ to evaluate its influence on the microstructural properties of the synthetic particles. ZnSe powder thus fabricated was characterized using various analytical tools such as SEM, XRD, TEM and UV-Vis methods. Two types of ZnSe particles, that is, the precipitated particle and the colloidal particles, were identified in the analysis. The precipitated particles were around 100 nm in average size, whereas the average size of the colloidal particles was around 20 nm. The precipitated particles made at $150^{\circ}C$ and $180^{\circ}C$ were found to be a single phase of ZnSe; however, an inhomogeneous phase was obtained at the lower synthesis temperature of $95^{\circ}C$, suggesting that the temperature for the synthesis should be over $100^{\circ}C$. The precipitated particles were inactive in the UV-Vis absorption investigation, whereas the colloidal particles showed that absorptions occurred at 380 nm in the UV-Vis spectrum.

3차원 콜로이드 광결정의 고속 제작 및 응용 (Quick Fabrication of Three Dimensional Colloidal Crystals and Their Applications)

  • 이수진;임상혁
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.640-643
    • /
    • 2013
  • 폴리스티렌 콜로이드 에멀젼 용액에서 물이 증발하게 되면 순간적으로 폴리스티렌 콜로이드 입자들이 물 표면으로 튀어나오게 되며 이러한 입자들 간의 모세관력에 의해 자기조립이 일어나게 되는데, 폴리스티렌 입자의 경우 유효밀도가 물 보다 작아 물 표면 위에 3차원 광결정을 형성하게 된다. 본 논문에서는 이러한 현상을 젖음성이 있는 제한된 공간을 가지는 구조를 가지는 유리기판 위에서 일어나도록 함으로써, 3차원의 폴리스티렌 콜로이드 결정이 고속으로 생성되고 기판위로 옮겨질 수 있도록 고안하였다. 고속으로 제작된 폴리스티렌 콜로이드 광결정은 폴리스티렌 입자의 크기 및 광결정 필름의 입사각을 조절하여 가시광 전체 영역의 빛을 선택적으로 반사하는 광필터로 적용해 보았다.

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V.;Gareev, K.G.;Ionin, S.A.;Ryzhov, V.A.;Bogachev, Yu.V.;Klimenkov, B.D.;Kononova, I.E.;Moshnikov, V.A.
    • Journal of Magnetics
    • /
    • 제20권3호
    • /
    • pp.221-228
    • /
    • 2015
  • Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

광화학적 방법을 이용한 금속입자의 합성과 광학적 특성 연구 (Surface Plasmon Resonances of Metal Colloidal Particles Synthesized by a Photo-Chemical Process)

  • 고민진
    • 대한화학회지
    • /
    • 제43권1호
    • /
    • pp.1-7
    • /
    • 1999
  • 이 논문에서는 광화학적 방법을 이용하여 금속 콜로이드 입자를 반도체 나노입자를 함유한 수용액내에서 제조하여 그 광학적 특성을 관찰하였다. 형성된 금속입자는 사용된 반도체 입자에 따라 다른 경향을 나타낸다. Au 금속 입자를 CdS 입자를 함유한 수용액내에서 제조한 경우 일반적인 금속 입자의 Plasmon Resonance의 특성을 보이는 반면 Ag금속 입자를 AgBr 입자를 함유한 용액내에서 제조한 경우 Red-Shift 현상을 보였고, 그 정도는 UV 조사량에 따라 달라졌다. 이러한 금속 Plasmon Resonance의 Red-Shift 현상을 Effective Medium 이론을 이용하여 이론적으로 설명하였다.

  • PDF

Optimization of Emulsion Polymerization for Submicron-Sized Polymer Colloids towards Tunable Synthetic Opals

  • Kim, Seul-Gi;Seo, Young-Gon;Cho, Young-Jin;Shin, Jin-Sub;Gil, Seung-Chul;Lee, Won-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권7호
    • /
    • pp.1891-1896
    • /
    • 2010
  • Submicron-sized polymeric colloidal particles can self assemble into 3-dimensional (3D) opal structure which is a useful template for photonic crystal. Narrowly dispersed polymer microspheres can be synthesized by emulsion polymerization in water using water-soluble radical initiator. In this report, we demonstrate a facile and reproducible emulsion polymerization method to prepare various polymeric microspheres within 200 - 400 nm size ranges which can be utilized as colloidal photonic crystal template. By controlling the amount of monomer and surfactant, monodisperse polymer colloids of polystyrene (PS) and acrylates with various sizes were successfully prepared without complicated synthetic procedures. Such polymer colloids self-assembled into 3D opal structure exhibiting bright colors by reflection of visible light. The colloidal particles and the resulting opal structures were rigorously characterized, and the wavelength of the structural color from the colloidal crystal was confirmed to have quantitative relationship with the size of constituting colloidal particles as predicted by Bragg equation. The tunability of the structural color was achieved not only by varying the particle size but also by infiltration of the colloidal crystal with liquids having different refractive indices.