Reorientation of Colloidal Crystalline Domains by a Thinning Meniscus

  • Im, Sang-Hyuk (Department of Chemical & Bimolecular Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, O-Ok (Department of Chemical Engineering, Woosuk University)
  • Published : 2004.04.01

Abstract

When water is evaporated quickly from a water-based colloidal suspension, colloidal particles protrude from the water surface, distorting it and generating lateral capillary forces between the colloidal particles. The protruded colloidal particles are then assembled into ordered colloidal crystalline domains that float on the water surface on account of their having a lower effective density than water. These colloidal crystal domains then assemble together by lateral capillary force and convective flow; the generated colloidal crystal has grain boundaries. The single domain size of the colloidal crystal could be controlled, to some extent, by changing the rate of water evaporation, but it seems very difficult to fabricate a single crystal over a large area of the water's surface without reorienting each colloidal crystal domain. To reorient such colloidal crystal domains, a glass plate was dipped into the colloidal suspension at a tilted angle because the meniscus (airwaterglass plate interface) is pinned and thinned by further water evaporation. The thinning meniscus generated a shear force and reoriented the colloidal crystalline domains into a single domain.

Keywords

References

  1. Adv. Funct. Mater. v.12 M.N.Shkunov;X.V.Vardeny;M.C.DeLong;R.C.Poloson;A.A.Zakhidov;R.H.Baughman https://doi.org/10.1002/1616-3028(20020101)12:1<21::AID-ADFM21>3.0.CO;2-S
  2. Adv. Mater. v.13 L.Vogelaar;W.Nijda;H.A. van Wolferen;R.M. de Ridder;F.B.Segerink;E.F.L.Kuipers;N.F. van Hulst https://doi.org/10.1002/1521-4095(200110)13:20<1551::AID-ADMA1551>3.0.CO;2-V
  3. J. Am. Chem. Soc. v.122 K.Lee;S.A.Asher https://doi.org/10.1021/ja002017n
  4. Langmuir v.15 S.H.Park;Y.Xia https://doi.org/10.1021/la980658e
  5. Adv. Mater. v.10 H.Miguez;F.Meseguer;C.Lopez;A.Blanco;J.Maya;J.requena;A.Mifsud;V.Fornes https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<480::AID-ADMA480>3.0.CO;2-Y
  6. Chem. Mater. v.12 A.L.Rogach;N.A.Kotov;D.S.Koktysh;J.W.Ostrander;G.A.Ragoisha https://doi.org/10.1021/cm000274l
  7. Chem. Mater. v.11 P.Jiang;J.F.Bertone;K.S.Hwang;V.L.Colvin https://doi.org/10.1021/cm990080+
  8. Nature v.414 Y.A.Vlasov;X.Z.Bo;J.C.Sturn;D.J.Norris https://doi.org/10.1038/35104529
  9. Adv. Mater. v.14 S.H.Im;Y.T.Lim;D.J.Suh;O.O.Park https://doi.org/10.1002/1521-4095(20021002)14:19<1367::AID-ADMA1367>3.0.CO;2-U
  10. Chem. Mater. v.13 G.R.Yi;J.H.Moon;S.M.Yang https://doi.org/10.1021/cm0102584
  11. J. Polym. Sci.;Polym. Chem. v.30 J.H.Kim;M.Chainey;M.S.El-Aasser;J.W.Vanderhoff https://doi.org/10.1002/pola.1992.080300201
  12. Korea Polym. J. v.5 K.Chengyou;L.Huihui;Y.Qing
  13. Korea Polym. J. v.2 M.S.Park
  14. Macromol. Res. v.11 S.H.Im;O.O.Park;M.H.Kwon https://doi.org/10.1007/BF03218339
  15. Natrue v.361 N.D.Denkov;O.D.Velev;P.A.Kralchevsky;I.B.Ivanov;H.Yoshimura;K.Nagayama
  16. Langmuir v.8 N.D.Denkov;O.D.Velev;P.A.Kralchevsky;I.B.Ivanov;H.Yoshimura;K.Nagayama https://doi.org/10.1021/la00048a054
  17. Langmuir v.11 E.Adachi;A.S.Dimitrov;K.Nagayama https://doi.org/10.1021/la00004a003
  18. langmuir v.12 A.S.Dimitrov;K.Nagayama https://doi.org/10.1021/la9502251
  19. Langmuri v.11 M.Yamaki;J.Higo;K.Nagayama https://doi.org/10.1021/la00008a021
  20. Appl. Phys. Lett. v.78 Y.H.Ye;F.LeBlanc;A.Hache;V.V.Truong https://doi.org/10.1063/1.1337619