DOI QR코드

DOI QR Code

Fabrication of Colloidal Clusters of Polymer Microspheres and Nonspherical Hollow Micro-particles from Pickering Emulsions

  • Cho, Young-Sang (Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Kim, Tae-Yeol (Department of Engineering Chemistry, Chungbuk National University) ;
  • Yi, Gi-Ra (Department of Engineering Chemistry, Chungbuk National University) ;
  • Kim, Young-Kuk (Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Materials Science) ;
  • Choi, Chul-Jin (Nano Functional Materials Research Group, Department of Powder Materials, Korea Institute of Materials Science)
  • Received : 2011.07.20
  • Accepted : 2011.11.15
  • Published : 2012.01.20

Abstract

We have introduced the Pickering emulsion systems to generate novel confining geometries for the selforganization of monodisperse polymer microspheres using nanoparticle-stabilized emulsion droplets encapsulating the building block particles. Then, through the slow evaporation of emulsion phases by heating, these microspheres were packed into regular polyhedral colloidal clusters covered with nanoparticle-stabilizers made of silica. Furthermore, polymer composite colloidal clusters were burnt out leaving nonspherical hollow micro-particles, in which the configurations of the cluster structure were preserved during calcination. The selfassembled porous architectures in this study will be potentially useful in various applications such as novel building block particles or supporting materials for catalysis or gas adsorption.

Keywords

References

  1. Yuan, Q.; Cayre, O. J.; Fujii, S.; Armes, S. P.; Williams, R. A.; Biggs, S. Langmuir 2010, 26, 18408. https://doi.org/10.1021/la1033564
  2. Klein, S. M.; Manoharan, V. N.; Pine, D. J.; F. F. Lang, F. F. Langmuir 2010, 21, 6669.
  3. Mihi, A.; Calvo, M. E.; Anta, J. A.; Miguez, H. J. Phys. Chem. C 2008, 112, 13. https://doi.org/10.1021/jp7105633
  4. Koo, H. Y.; Yi, D. K.; Yoo, S. J.; Kim, D.-Y. Adv. Mater. 2004, 16, 274. https://doi.org/10.1002/adma.200305617
  5. Nykypanchuk, D.; Maye, M. M.; Lelie, D. V. D.; Gang, O. Nature 2008, 451, 549. https://doi.org/10.1038/nature06560
  6. Moon, J. H.; Cho, Y.-S.; Yang, S.-M. Bull. Korean Chem. Soc. 2009, 30, 2245. https://doi.org/10.5012/bkcs.2009.30.10.2245
  7. Yu, H. M.; Kim, A. R.; Moon J. H.; Lim, J. S.; Choi, K. Y. Bull. Korean Chem. Soc. 2011, 32, 2178.
  8. Wilber, A. W.; Doye, J. P. K.; Louis, A. A.; Noya, E. G.; Miller, M. A.; Wong, P. J. Chem. Phys. 2007, 127, 085106. https://doi.org/10.1063/1.2759922
  9. Zhang, Z.; Keys, A. S.; Chen, T.; Glotzer, S. C. Langmuir 2005, 21, 11547. https://doi.org/10.1021/la0513611
  10. Michele, C. D.; Gabrielli, S.; Tartaglia, P. T.; Sciortino, F. J. Phys. Chem. B. 2006, 110, 8064. https://doi.org/10.1021/jp056380y
  11. Torquato S.; Jiao, Y. Nature 2009, 460, 876. https://doi.org/10.1038/nature08239
  12. Zerrouki, D.; Baudry, J.; Pine, D. J.; Chaikin, P.; Bibette, J. Nature 2008, 455, 380. https://doi.org/10.1038/nature07237
  13. Duget, E.; Desert, A.; Perro, A.; Ravaine, S. Chem. Soc. Rev. 2011, 40, 941. https://doi.org/10.1039/c0cs00048e
  14. Manoharan, V. N.; Elsesser, M. T.; Pine, D. J. Science 2003, 301, 483. https://doi.org/10.1126/science.1086189
  15. Cho, Y.-S.; Yi, G.-R.; Lim, J.-M.; Kim, S.-H.; Manoharan, V. N.; Pine, D. J.; Yang, S.-M. J. Am. Chem. Soc. 2005, 127, 15968. https://doi.org/10.1021/ja0550632
  16. Cho, Y.-S.; Yi, G.-R.; Kim, S.-H.; Pine, D. J.; Yang, S.-.M. Chem. Mater. 2005, 17, 5006. https://doi.org/10.1021/cm051123r
  17. Cho, Y.-S.; Yi, G.-R.; Kim, S.-H.; Jeon, S.-J.; Elsesser, M. T.; Yu, H. K.; Yang, S.-M.; Pine, D. J. Chem. Mater. 2007, 19, 3183. https://doi.org/10.1021/cm070051w
  18. Cho, Y.-S.; Yi, G.-R.; Kim, S.-H.; Elsesser, M. T.; Breed, D. R.; Yang, S.-M. J. Colloid Interf. Sci. 2008, 318, 124. https://doi.org/10.1016/j.jcis.2007.10.010
  19. Cho, Y.-S.; Yi, G.-R.; Chung, Y. S.; Park, S. B.; Yang, S.-M. Langmuir 2007, 23, 12079. https://doi.org/10.1021/la7018346
  20. Lee, S. Y.; Gradon, L.; Janeczko, S.; Iskandar, F.; Okuyama, K. ACS Nano 2010, 4, 4717. https://doi.org/10.1021/nn101297c
  21. Velev, O. D.; Furusawa, K.; Nagayama, K. Langmuir 1996, 12, 2385. https://doi.org/10.1021/la950679y
  22. Velev, O. D.; Lenhoff, A. M.; Kaler, E. W. Science 2000, 287, 2240. https://doi.org/10.1126/science.287.5461.2240
  23. Kuncicky, D. M.; Bose, K.; Costa, K. D.; Velev, O. D. Chem. Mater. 2007, 19(2), 141. https://doi.org/10.1021/cm062217j
  24. Gao, Q.; Wang, C.; Liu, H.; Chen, Y.; Tong, Z. Polym. Chem. 2010, 1, 75. https://doi.org/10.1039/b9py00255c
  25. Li, J.; Stover, H. D. H. Langmuir 2008, 24, 13237. https://doi.org/10.1021/la802619m
  26. Aveyard, R.; Binks, B. P.; Clint, J. H. Adv. Colloid Interf. Sci. 2003, 100-102, 503. https://doi.org/10.1016/S0001-8686(02)00069-6
  27. Frelichowska, J.; Bolzinger, M.-A.; Chevalier, Y. Colloid Surf. A 2009, 343, 70. https://doi.org/10.1016/j.colsurfa.2009.01.031
  28. Pickering, S. U. J. Chem. Soc. 1907, 91, 2001. https://doi.org/10.1039/ct9079102001
  29. Destribats, M.; Schmitt, V.; Backov, R. Langmuir 2010, 26(3), 1734. https://doi.org/10.1021/la902828q
  30. Backov, R. Soft Matt. 2006, 2, 452. https://doi.org/10.1039/b602579j
  31. Tarimala, S., Dai, L. L. Langmuir 2004, 20, 3492. https://doi.org/10.1021/la036129e
  32. Chen, T., Colver, P. J.; Bon, S. A. F. Adv. Mater. 2007, 19, 2286. https://doi.org/10.1002/adma.200602447
  33. Leal-Calderon, F.; Schmitt, V. Curr. Opin. Colloid Interf. Sci. 2007, 13, 217. https://doi.org/10.1016/j.cocis.2007.09.005
  34. Arditty, S.; Whitby, C.; Schimitt, V.; Binks, B. P.; Leal-Calderon, F. Eur. Phys. J. E 2003, 11, 273. https://doi.org/10.1140/epje/i2003-10018-6
  35. Giermanska, J.; Laine, V.; Arditty, S.; Schimitt, V.; Leal-Calderon, F. Langmuir 2005, 21, 4316. https://doi.org/10.1021/la0501177
  36. Simovic, S.; Prestidge, C. A. Langmuir 2004, 20, 8357. https://doi.org/10.1021/la0491807
  37. Yang, F.; Niu, Q.; Lan, Q.; Sun, D. J. Colloid Interf. Sci. 2007, 306, 285. https://doi.org/10.1016/j.jcis.2006.10.062
  38. Wagner, C. S.; Lu, Y.; Wittemann, A. Langmuir 2008, 24, 12126. https://doi.org/10.1021/la802580k
  39. Cho Y.-S.; Yi, G.-R. J. Disperse. Sci. Tech. 2010, 31, 169. https://doi.org/10.1080/01932690903110228
  40. Chang, H. K.; Jang, H. D.; Park, J. H.; Cho, K.; Kil, D. S. Kor. Chem. Eng. Res. 2008, 46, 479.
  41. Kim, J.-J.; Shin, K.; Suh, K.-D. Macromol. Res. 2007, 15, 601. https://doi.org/10.1007/BF03218938
  42. Han, S.-J.; Shin, K.; Suh, K.-D.; Ryu, J.-H. Macromol. Res. 2008, 16, 399. https://doi.org/10.1007/BF03218536
  43. Cho, Y.-S.; Jeon, S.-J.; Yi, G.-R. Kor. Chem. Eng. Res. 2007, 45, 611.
  44. Chen, E.-C.; Lin, Y.-W.; Wu, T.-M. Polym. Degrad. Stabil. 2009, 94, 550. https://doi.org/10.1016/j.polymdegradstab.2009.01.019
  45. Ibisate, M.; Zou, Z.; Xia, Y. Adv. Funct. Mater. 2006, 16(12), 1627. https://doi.org/10.1002/adfm.200600228
  46. Xia, Y.; Gates, B.; Li, Z.-Y. Adv. Mater. 2001, 13(6), 409. https://doi.org/10.1002/1521-4095(200103)13:6<409::AID-ADMA409>3.0.CO;2-C
  47. Malins, A.; Williams, S. R.; Eggers, J.; Tanaka, H.; Royall, C. P. J. Noncryst. Sol. 2011, 357, 760. https://doi.org/10.1016/j.jnoncrysol.2010.08.021
  48. Jang, H.-D.; Chang, H.; Cho, K.; Kim, S.-J.; Park, J.-H.; Choi, J.- W.; Okuyama, K. Ultramicroscopy 2008, 108, 1241. https://doi.org/10.1016/j.ultramic.2008.04.039

Cited by

  1. Fabrication of superhydrophobic surfaces using structured colloids vol.30, pp.5, 2013, https://doi.org/10.1007/s11814-013-0031-x
  2. Assembly of One-Patch Colloids into Clusters via Emulsion Droplet Evaporation vol.10, pp.4, 2017, https://doi.org/10.3390/ma10040361
  3. Architectural Design of Self-Assembled Hollow Superstructures pp.09359648, 2019, https://doi.org/10.1002/adma.201801441
  4. Fabrication of Hollow Silica Particles Using a Self-Assembled Polyethylene Granule as a Template vol.2018, pp.1687-4129, 2018, https://doi.org/10.1155/2018/4979260
  5. Preparation of Silica Hollow Composite Particles vol.35, pp.11, 2012, https://doi.org/10.5012/bkcs.2014.35.11.3303
  6. Finite Packing of Shape-Anisotropic Colloidal Particles vol.36, pp.7, 2012, https://doi.org/10.1080/01932691.2014.938162