Surface Plasmon Resonances of Metal Colloidal Particles Synthesized by a Photo-Chemical Process

광화학적 방법을 이용한 금속입자의 합성과 광학적 특성 연구

  • Ko, Min-Jin (LG Chemical Ltd/Research Park, Advanced Materials Research Institute Science Town) ;
  • Plawsky, Joel (Department of Chemical Engineering, Rensselaer Polytechnic Institute)
  • 고민진 (LG화학기술원 신소재연구소) ;
  • Published : 19990200

Abstract

Metal colloidal particles have been prepared by a photo-chemical process in an aqueous solution containing semiconductor nanocrystallites. Metal colloidal particles produced in CdS and AgBr exhibit different absorption spectra. Au particles produced in solution with CdS show typical Au plasmon resonance absorption spectra. On the other hand Ag particles in solution with AgBr shows surface plasmon resonance absorption spectra which are red-shifted, as compared to that of a dispersion of homogeneous Ag colloidal particles in the same host. The extent of red-shift depends on the UV illumination time. This phenomenon is interpreted within the context of effective medium theory for small volume fractions. From the theory, a metal coated particle predicts Ag plasmon resonance, red shifted with respect to 400 nm that would be associated with a silver particle in solution. The absorption peak position is very sensitive to the coating thickness.

이 논문에서는 광화학적 방법을 이용하여 금속 콜로이드 입자를 반도체 나노입자를 함유한 수용액내에서 제조하여 그 광학적 특성을 관찰하였다. 형성된 금속입자는 사용된 반도체 입자에 따라 다른 경향을 나타낸다. Au 금속 입자를 CdS 입자를 함유한 수용액내에서 제조한 경우 일반적인 금속 입자의 Plasmon Resonance의 특성을 보이는 반면 Ag금속 입자를 AgBr 입자를 함유한 용액내에서 제조한 경우 Red-Shift 현상을 보였고, 그 정도는 UV 조사량에 따라 달라졌다. 이러한 금속 Plasmon Resonance의 Red-Shift 현상을 Effective Medium 이론을 이용하여 이론적으로 설명하였다.

Keywords

References

  1. J. Mater. Res. v.4 Andrews, R. P.;Averback, R. S.;Brown, W. L.;Brus, L. E.;Goddard, W. A.;Kaldor, A.;Louie, S. G.;Moscovits, M.;Peercy, P. S.;Riley, S. J.;Siegel, R. W.;Spaepen, F.;Wang, Y. J.
  2. Science v.248 Pool. S.
  3. Science v.257 Ziolo, R. F.;Giannelie, E. P.;Weinstein, B. A.;O'Horo, M. P.;Ganguly, B. N.;Mehrotra, B. V.;Russell, M. W.;Huffman, D. R.
  4. Clusters and Colloids Schmid, G.
  5. J. Chem. Phys. v.80 Brus, L. E.
  6. Sov. Phys. Semicond. v.16 Ekimov, A. I.;Onushchenki, A. A.
  7. Appl. Phys. Lett. v.55 Shinojima, H.;Yumoto, J.;Uesugi, N.;Omi, S.;Asahara, Y.
  8. Chem. Phys. Lett. v.203 Hasselbarth, A.;Eychmuller, A.;Weller, H.
  9. J. Appl. Phys. v.61 Borrelli, N. F.;Hall, D. W.;Holland, H. J.;Smith, D. W.
  10. J. Opt. Soc. Am. v.B6 Neeves, A. E.;Birnboim, M. H.
  11. Phys. Rev. A v.2 Kalyaniwalla, N.;Haus, J. W.;Ingura, R.;Birnboim, M.
  12. Mater. Res. Symp. Proc. v.164 Birnboim, M. H.;Ma, W. P.
  13. Solid State Commun. Sci. v.16 Ganiere, J. D.;Rechsteiner, R.;Smithard, M. A.
  14. Surf. Sci. Abe, H.;Schulze, W.;Tesche, B.;Urban, J.;Winter, B.
  15. Phys. Rev B v.43 Selby, P.
  16. Phys. Rev. Lett. v.177 Malov, Y.;Zaretski, D. F.
  17. Adv. Polym. Sci. v.119 Godvosky, D. I.
  18. J. Phys. Chem. v.90 Brus, L.
  19. J. Phys. Chem. v.92 Petit, C.;Pileni, M. D.
  20. J. Chem. Phys. v.80 Rosseti, R.;Ellison, J. L.;Gibson, J. M.;Brus, L. E.
  21. J. Phys. Chem. v.89 Kuczynski, J. P.;Thomas, J. K.
  22. J. Phys. Chem. v.91 Wang, Y.;Horron, N. J.
  23. Nature v.338 Dameron, C.T.;Reese, R. N.;Mehra, R. K.;Kortan, A. R.;Carroll, P. J.;Steigerwald, M. L.;Brus, L. E.;Winge, D. R.
  24. Ber. Bunsenges. Phys. Chem. v.86 Henglein, A.
  25. J. Appl. Phys. v.22 Aden, A. L.;Kerker, M. L.
  26. Handbook of Optical Constants of Solids Palik, E.D.
  27. Chem. Vap. Deposition v.1 Notzel, R.;Fukui, T.;Hasegawa, H.;Temmyo, J.;Kozen, A.;Tamamura, T.