• Title/Summary/Keyword: Collapse area

Search Result 339, Processing Time 0.039 seconds

Postbuckling Failure Characteristics of Composite Stiffened Panels (복합재 보강패널의 좌굴 후 파손 특성)

  • Kim, Gwang-Su;Lee, Yeong-Mu;Jang, Yeong-Sun;Yu, Jae-Seok;An, Jae-Mo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.37-43
    • /
    • 2006
  • Six types of hat stiffened composite panels were manufactured with different bonding methods and stiffener section shapes and compression testing of these panels were performed. The panels showed similar behaviors in bucking and postbuckling region before a skin-stiffener separation failure occurred. Although all the separation failures occurred at the same locations of stiffener flanges close by skin buckling crests, the separation loads, separation failure growth behaviors and final collapse loads were different with respect to bonding methods and stiffener section shapes. As the separation failure initiated early and propagated larger area, collapse loads and structural efficiency of the panels decreased.

A Study on Characteristics of Damageability and Repairability with Similar Platform Type at Low Speed 40% Offset Crash Test (동일 플렛폼 차량에 대한 저속 충돌시 손상성 수리성에 미치는 영향에 관한 연구)

  • Lim, Jong-Hun;Park, In-Song;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.108-113
    • /
    • 2005
  • The damageability and repairability of similar platform type vehicles could be very concerned with design optimization. In all the vehicles crash tested, small size passenger vehicles were weakness in aspect of damageability and repairability. The most critical area appears to be repair cost considering that parts cost is the largest portion of total repair cost segments. Besides repair cost, attaching method of front sidemember and subframe are placed special importance for impact energy absorption and damageability and repairability. So in order to improve damageability and repairability of vehicle structure and body component of the monocoque type passenger vehicles, the end of front side member and front back beam should be designed with optimum level and to supply the end of front side member as a partial condition approx 300mm. The effectiveness of design concept on the 40% offset frontal impact characteristics of the passenger vehicle structure is investigated and summarized.

Rollover Analysis of a Bus using Beam Element and Nonlinear Spring Characteristics (보 요소와 비선형 스프링 특성을 이용한 버스 전복 해석)

  • Park, Su-Jin;Yoo, Wan-Suk;Kwon, Yuen-Ju;Kim, Jin-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.56-63
    • /
    • 2007
  • In case of bus rollover, the body structure of the bus should be designed to ensure the survival space for passengers. So, this study focuses on evaluating rollover strength through a computer simulation using the commercial code, LS-DYNA3D at the initial stage of vehicle development. For this study, section structure was modeled using a simple beam element, and impact boundary conditions required by ECE(Economic Commission for Europe) regulation No.66 were applied. In order to confirm the validity of the beam element bus model, the results compared with the test results and shell element bus model. The analysis errors from beam element bus model are due to the difference in strain energy of joint area between beam and shell model. In this study, a method for the joint modeling was suggested by using nonlinear springs to which the collapse mechanisms were applied.

A Study on the Design Concept and Simplified Analysis Method in Dropped Object Accidents by Lifting Crane (크레인 중량물 낙하사고에 대응한 설계개념과 간이 해석법에 대한 연구)

  • Kim, Ul-Nyeon;Kim, Han-Byul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.3
    • /
    • pp.251-262
    • /
    • 2019
  • This paper is about design concept and simplified analysis method against dropped object events. The ships and offshore structures are exposed to various types of dropped object accidents such as laydown area struck by drill collar and topside deck hit by food container during their lifetime. Mitigation can be accomplished by proper facility layout and designing structures to safely absorb energy from accidental loads. It shall be designed to avoid loss of life, environmental pollution and loss of assets. Impact loads can lead to structural global collapse of the main structure or punching of a local barrier type structure with potential to escalate directly or indirectly to a global collapse of the structure. This study provides the background information on the issue of dropped object of the shipyard and also focuses on structural assessment of the local individual component such as deck plate, stiffener and web/girder by using simplified analysis method. The results of the simplified analysis method were compared with numerical results using non-linear finite element simulation.

GIS-based Subsidence Hazard Map in Urban Area (GIS 기반의 도심지 지반침하지도 작성 사례)

  • Choi, Eun-Kyeong;Kim, Sung-Wook;Cho, Jin-Woo;Lee, Ju-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • The hazard maps for predicting collapse on natural slopes consist of a combination of topographic, hydrological, and geological factors. Topographic factors are extracted from DEM, including aspect, slope, curvature, and topographic index. Hydrological factors, such as soil drainage, stream-power index, and wetness index are most important factors for slope instability. However, most of the urban areas are located on the plains and it is difficult to apply the hazard map using the topography and hydrological factors. In order to evaluate the risk of subsidence of flat and low slope areas, soil depth and groundwater level data were collected and used as a factor for interpretation. In addition, the reliability of the hazard map was compared with the disaster history of the study area (Gangnam-gu and Yeouido district). In the disaster map of the disaster prevention agency, the urban area was mostly classified as the stable area and did not reflect the collapse history. Soil depth, drainage conditions and groundwater level obtained from boreholes were added as input data of hazard map, and disaster vulnerability increased at the location where the actual subsidence points. In the study area where damage occurred, the moderate and low grades of the vulnerability of previous hazard map were 12% and 88%, respectively. While, the improved map showed 2% high grade, moderate grade 29%, low grade 66% and very low grade 2%. These results were similar to actual damage.

Effects of face-sheet materials on the flexural behavior of aluminum foam sandwich

  • Xiao, Wei;Yan, Chang;Tian, Weibo;Tian, Weiping;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.301-308
    • /
    • 2018
  • Properties of AFS vary with the changes in the face-sheet materials. Hence, the performance of AFS can be optimized by selecting face-sheet materials. In this work, three types of face-sheet materials representing elastic-perfectly plastic, elastic-plastic strain hardening and purely elastic materials were employed to study their effects on the flexural behavior and failure mechanism of AFS systematically. Result showed face-sheet materials affected the failure mechanism and energy absorption ability of AFS significantly. When the foam cores were sandwiched by aluminum alloy 6061, the AFS failed by face-sheet yielding and crack without collapse of the foam core, there was no clear plastic platform in the Load-Displacement curve. When the foam cores were sandwiched by stainless steel 304 and carbon fiber fabric, there were no face-sheet crack and the sandwich structure failed by core shear and collapse, plastic platform appeared. Energy absorption abilities of steel and carbon fiber reinforced AFS were much higher than aluminum alloy reinforced one. Carbon fiber was suggested as the best choice for AFS for its light weight and high performance. The versus strength ratio of face sheet to core was suggested to be a significant value for AFS structure design which may determine the failure mechanism of a certain AFS structure.

A Study on Development Plan and Derivation of Improvement by Procedure for the Systematization in Steep Slope Management System (급경사지 관리의 체계화를 위한 절차별 개선사항 도출과 발전 방안 연구)

  • Lee, Jae Joon;Yun, Hong Sic;Kim, Yun Hee;Park, Sang Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.1
    • /
    • pp.111-122
    • /
    • 2020
  • Purpose: In order to manage the steep slopes effectively, this study diagnose problems in the procedure of steep slopes management and propose Improved frame work is intended to mitigate human and property damage Method: Problems in the system are drawn through review of procedures for designation of collapse risk zones and fied investigation, interviews with local governments, and expert advice. Result: The selection stage, the subject of the management, the management method, and the factors that need to be improved by the management stage before the evaluation are derived. Conclusion: This paper identified the problems raised and drew improvements and presented the research direction for the development of the new system (plan) and the steep slope site.

Analysis of Characteristics of some of Forest Environmental Factors on Debris Flow Occurrence - With a Pusan and Ulsan Metropolitan Areas - (토석류 유출에 기인하는 몇 가지 산림환경인자 분석 - 부산 및 울산광역시를 중심으로 -)

  • Lee, Hae-dong;Park, Jae-hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.2
    • /
    • pp.213-220
    • /
    • 2015
  • This study was carried out to determine the distribution of factors as effected by debris flow in Ulsan and Pusan metropolitan areas because mainly debris flow caused by typhoons and local heavy rainfall events is mainly attributed to damage of human being ad property. The high risk degree of debris flow was to affected by east (20%), northeast (20%) and northwest (20%) slopes with stand age class with elevation (69%) of 100-200 (33%). Also, the risk was high in high erosion collapse degree with slope degree of $20-25^{\circ}$ with over 300 mm (100%) of maximum daily rainfall events and 50-100 mm (50%) or >100 mm (50%) of maximum hourly rainfall events with <5 km of stream path and <50 ha of catchment area. Landslide debris and wood residue flow was also related to igneous rocks (73%) and bank collapse types of debrs flow (57%).

Numerical sensitivity analysis for the reinforcement effect of a curvature of a tunnel floor on soft grounds (연약지반에 위치한 터널 바닥부 곡률의 보강효과에 대한 수치해석적 민감도 분석)

  • You, Kwang-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.2
    • /
    • pp.61-76
    • /
    • 2021
  • As the number of existing road tunnels increases every year, collapse and floor heaving accidents occur frequently during construction. The collapse among tunnel accidents dominates, so that studies related to the floor heaving are relatively insufficient. Accordingly, many studies to reinforce the lower part of the tunnel have been conducted, but the analysis on the effect of the curvature of the tunnel floor is insufficient. Therefore, in this study, the effects of the upper analysis area height and the coefficient of lateral earth pressure of the tunnel located on a tuff deterioration zone with a large rock cover, as well as the floor curvature, were examined through sensitivity analysis. As a result of the analysis, it turned out that the overall stability of the tunnel increases as the floor curvature increases, the coefficient of lateral earth pressure decreases, and the upper analysis region increases.

Modes and Causes of Collapse of Subway Tunnels (도심지 지하철 터널의 붕괴유형과 원인)

  • 박광준;이인근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1993.03a
    • /
    • pp.41-48
    • /
    • 1993
  • The 2nd phase of Seoul Subway, Lines 5,6,7 and 8, is in progress. To reduce the surface traffic congestion during construction the greater part of the system has been engineered by bored tunnelling. The current tunnelling methodology is based on the New Austrian Tunnelling Method. Serveral collapses have been reported to date. Most of the collapses took place in the area forwed with soft ground. The modes and causes of the collapses were progressive failures in the unsupported surface and sliding failures due to the unfavourable joint direction. The major causes turned out to be the weakness of ground and the sudden influx of ground water from the surface. Some measures to prevent the failures are also presented. To ensure the safe tunnelling ghrough the soft ground the unsupported excavation area has to be minimized and closed as early as possible. Additional support measures such as supporting core, sealing shotcrete, forepoling, spread footing, face rock bolting and grouting should be employed as well depend on ground conditions.

  • PDF