DOI QR코드

DOI QR Code

Numerical sensitivity analysis for the reinforcement effect of a curvature of a tunnel floor on soft grounds

연약지반에 위치한 터널 바닥부 곡률의 보강효과에 대한 수치해석적 민감도 분석

  • You, Kwang-Ho (Dept. of Civil and Environmental Engineering, University of Suwon)
  • 유광호 (수원대학교 건설환경공학과)
  • Received : 2020.12.09
  • Accepted : 2021.03.08
  • Published : 2021.03.31

Abstract

As the number of existing road tunnels increases every year, collapse and floor heaving accidents occur frequently during construction. The collapse among tunnel accidents dominates, so that studies related to the floor heaving are relatively insufficient. Accordingly, many studies to reinforce the lower part of the tunnel have been conducted, but the analysis on the effect of the curvature of the tunnel floor is insufficient. Therefore, in this study, the effects of the upper analysis area height and the coefficient of lateral earth pressure of the tunnel located on a tuff deterioration zone with a large rock cover, as well as the floor curvature, were examined through sensitivity analysis. As a result of the analysis, it turned out that the overall stability of the tunnel increases as the floor curvature increases, the coefficient of lateral earth pressure decreases, and the upper analysis region increases.

매년 기존 도로 터널의 개소 및 연장이 증가하는 만큼 시공 중 붕락 및 융기사고가 빈번하게 발생하고 있다. 터널 사고 중 붕괴가 주를 이루어 상대적으로 융기와 관련된 연구가 미흡한 상태이다. 이에 터널 하부를 보강하는 많은 연구가 진행되어 오고 있으나, 터널 바닥부 곡률에 대한 분석이 부족한 실정이다. 따라서 본 연구에서는 바닥부 곡률은 물론이고, 토피가 큰 응회암 변질대에 위치한 터널의 상부 해석영역 높이 및 측압계수가 안정성에 미치는 영향을 민감도 분석을 통해 살펴보았다. 해석 결과 전반적으로 바닥부 곡률이 커질수록, 측압계수가 작을수록, 상부 해석영역이 높을수록 터널의 안정성이 증가하는 것으로 나타났다.

Keywords

References

  1. Brady, B.H.G., Brown, E.T. (1985), Rock Mechanics for Underground Mining, George Allen & Unwin, London, pp. 209.
  2. Cho, N.H. (2020), Analysis on floor heaving of road tunnels excavated in weak ground conditions, Ph.D. Dissertation, The University of Suwon, pp. 153.
  3. Donald, I.B., Giam, S.K. (1988), "Application of the nodal displacement method to slope stability analysis", Proceedings of the Fifth Australia-New Zealand Conference on Geomechanics, Sydney, Australia, pp. 456-460.
  4. Goodman, R.E. (1989), Introduction to Rock Mechanics (2nd edition), John Wiley & Sons, Inc., New York, USA, pp. 226.
  5. Itasca Consulting Group, Inc. (2005), FLAC manual version 5.0, Itasca Consulting Group, Minneapolis, Minnesota, USA.
  6. Kim, K.S. (2021), Numerical analysis of invert curvature effect on tunnel behavior in soft ground, Master's Thesis, The University of Suwon, pp. 60.
  7. Ministry of Land, Infrastructure and Transport (2020), Yearbook of road bridge and tunnel statistics, Ministry of Land Infrastructure and Transport, pp. 69.
  8. Naylor, D.J. (1982), Finite Elements and Slope Stability, Numerical Methods in Geomechanics (Martins J.B. eds.), NATO Advanced Study Institutes, Lisbon, Portugal, pp. 229-244.
  9. Park, J.W. (2003), A study on the assessment of factor of safety of tunnels, Master's Thesis, The University of Suwon, pp. 38-44.
  10. Song, K.I., Cho, G.C. (2006), "Equivalent design parameter determination for effective numerical modeling of pre-reinforced zones in tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 8, No. 2, pp. 151-163.
  11. You, K.H., Park, Y.J., Bae, G.J. (2000), "An assessment of safety factor for tunnels excavated in a weak rock layer", Journal of Korean Tunnelling and Underground Space Association, Vol. 2, No. 3, pp. 47-57.
  12. Zienkiewicz, O.C., Humpheson, C., Lewis, R.W. (1975), "Associated and non-associated visco-plasticity and plasticity in soil mechanics", Geotechnique, Vol. 25, No. 4, pp. 671-689. https://doi.org/10.1680/geot.1975.25.4.671