• Title/Summary/Keyword: Cold Pathogen

Search Result 79, Processing Time 0.021 seconds

Inhibitory effect of partial Pathogen growth in virtue of Green Tea Extracts in Cold Storage Conditions of Products for Cook-Chill System (Cook-Chill System을 위한 생산품의 냉장저장 중 녹차 추출물의 첨가에 따른 일부 식중독균의 증식저해효과)

  • Kim Heh-Young;Jung Sung-Mi
    • Korean journal of food and cookery science
    • /
    • v.21 no.1 s.85
    • /
    • pp.47-52
    • /
    • 2005
  • This study aimed to determine inhibitory effect of pathogen growth by adding green tea extracts to some cook-chill foods. For this study, chicken meat salad and pyeonyuk were blended with green tea extracts to different concentrations of 0, 2 and $3\%$ and prepared in a cook-chill system. S. typhimurium in chickien meat salad; Better antibacterial effects of green tea extracts were observed at a $3\%$ concentration, compared with a $2\%$ concentration. Populations of S. aureus in chicken meat salad; antibacterial effects at a $3\%$ concentration became significant from 3days while that at a $2\%$ concentration remained steady throughout the five-day duration. All three testing samples exhibited a decrease in populations of S. aureus during storage. In pyeonyuk, S. aureus counts at a $3\%$ concentration were 7.26 CFU/g on day 3 and declined to 6.61 CFU/g and 6.48 CFU/g on the following days, showing a greater degree of decline than that of a $2\%$ concentration.

Identification of Differentially Up-regulated Genes in Apple with White Rot Disease

  • Kang, Yeo-Jin;Lee, Young Koung;Kim, In-Jung
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.530-537
    • /
    • 2019
  • Fuji, a major apple cultivar in Korea, is susceptible to white rot. Apple white rot disease appears on the stem and fruit; the development of which deteriorates fruit quality, resulting in decreases in farmers' income. Thus, it is necessary to characterize molecular markers related to apple white rot resistance. In this study, we screened for differentially expressed genes between uninfected apple fruits and those infected with Botryosphaeria dothidea, the fungal pathogen that causes white rot. Antimicrobial tests suggest that a gene expression involved in the synthesis of the substance inhibiting the growth of B. dothidea in apples was induced by pathogen infection. We identified seven transcripts induced by the infection. The seven transcripts were homologous to genes encoding a flavonoid glucosyltransferase, a metallothionein-like protein, a senescence-induced protein, a chitinase, a wound-induced protein, and proteins of unknown function. These genes have functions related to responses to environmental stresses, including pathogen infections. Our results can be useful for the development of molecular markers for early detection of the disease or for use in breeding white rotresistant cultivars.

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin;Seo, Young-Su
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.323-333
    • /
    • 2015
  • As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Study on Application of Herba Ephedrae Main Blended Prescription from Dongeuybogam (동의보감(東醫寶鑑) 중(中) 마황(麻黃)이 주약(主藥)으로 배오(配伍)된 방제(方齊)의 활용(活用)에 대한 고찰(考察))

  • Hwang, Chi-Hwan;Yun, Young-Gab
    • Herbal Formula Science
    • /
    • v.13 no.2
    • /
    • pp.169-192
    • /
    • 2005
  • This report describes the remedial fields, symptoms, pathlogy, dosage, prescriptional constitution of 79 studies to the use of Herba Ephedrae main blended prescriptions from dongeubogam. The following conclusions were reached through investigations on the prescriptions that use Herba Ephedrae as a key ingredient Herba Ephedrae blended prescriptions are utilized for 26 therapeutic purposes, for example, in symptoms of cough, cold, wind. In particular, 20.2% of the prescriptions appear in the chapter of cough. Prescriptions that utilize Herba Ephearae as the main ingredient are used in the treatment of 47 different types of diseases, for example, in the treatment of wind-cold pathogen, cold, wind, exogenous febrile disease etc. Herba Ephedrae is most widely used in six pathogenic factors such as wind, cold, dampness, heat. The actual amount of Herba Ephedrae blended has ranged at a wide variety of amounts from 1 don to 2 don. It is widely applied with base prescriptions such as Mahwang-tang, Samyo-tang, Mahwangbujasesin-tang, Mahwangkanghwal-tang.

  • PDF

Functional Analysis of Pepper Cys2/His-Type Zinc-Finger Protein Promoter Region in Response to Bacterial Infection and Abiotic Stresses in Tobacco Using Agrobacterium-Mediated Transient Assay

  • Kim, Sang-Hee;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 2005
  • The promoter region flanking the 5’ CAZFP1 coding region was isolated from the genomic DNA of Capsicum annuum. To identify the upstream region of the CAZFP1 gene required for promoter activity, a series of CAZFP1 promoter deletion derivatives was created. Each deletion construct was analyzed by Agrobacterium-mediated transient transformation in tobacco leaves after infection by Pseudomonas syringae pv. tabaci, or treatment with methyl jasmonate (MeJA), ethylene, abscisic acid (ABA), salicylic acid (SA), cold and wounding. Promoter fragments of 685 bp or longer showed 7-fold or greater induction after P. s. pv. tabaci infection and MeJA treatment. The CAZFP1 full-length promoter (-999 bp) also showed 6-fold induction in response to ethylene. The transiently transformed tobacco leaves with the CAZFP1 full length promoter fused-GUS gene showed more than 5-fold induction in response to SA, ABA and cold. These results suggest that the CAZFP1 promoter contains responsive elements for pathogen, MeJA, ethylene, SA, ABA and cold.

A Study on the Kinds(種類), Causes(病因) and Mechanisms(病機) of Malaria(瘧疾) (학질(瘧疾)의 종류(種類)와 병인(病因).병기(病機)에 대한 고찰(考察))

  • Kang, Hyo-Jin;Jeong, Chang-Hyung;Jang, Woo-Chang;Lyu, Jeong-Ah;Baik, You-Sang
    • Journal of Korean Medical classics
    • /
    • v.26 no.2
    • /
    • pp.133-174
    • /
    • 2013
  • Objective : Malaria(瘧疾) is a disease that's main symptom is paroxysm - a cyclical occurrence of sudden coldness followed by rigor and then fever. Since the introduction of the cause and mechanism of malaria(瘧疾) in the "Suwen(素問)", including Cold malaria(寒瘧), Warm malaria(溫瘧), Heat malaria(癉瘧) and Wind malaria(風瘧), there has been over 20 different kinds of malaria, each of which are introduced in multiple medical texts. Method : Through comparison between "Suwen(素問)" and other medical texts, the categories, causes and mechanisms of malaria can be analysed and organized to overview the whole feature of it. Results & Conclusion : External pathogens of malaria(瘧疾) are wind(風), cold(寒), summerheat (暑), dampness(濕), miasmic toxin(瘴), pestilence(疫), ghost(鬼). Internal pathogens of malaria(瘧疾) are dietary irregularities(飮食不節), overexertion and fatigue(勞倦), phlegm(痰), seven emotion(七情). Malaria can be categorized into four groups according to the pathological mechanism that leads to paroxysm. They are latency of disease(伏氣), external contraction(外感), internal damage(內傷), and combination of disease(合病). Malaria-Paroxysm(瘧疾發作) occurs when the three following factors collide strongly : defense qi(衛氣), latent qi(伏邪) and external pathogen(新邪). When collision of the three factors takes place in the interior(裏), the body experiences chills. When it takes place in the exterior(表), the body experiences fever. The cyclical occurrence of Malaria-Paroxysm follows the circulation of defense qi.

Characterization of Hibiscus Chlorotic Ringspot Virus-Derived vsiRNAs from Infected Hibiscus rosa-sinensis in China

  • Han-hong Lan;Luan-mei Lu
    • The Plant Pathology Journal
    • /
    • v.40 no.5
    • /
    • pp.415-424
    • /
    • 2024
  • Lots of progress have been made about pathogen system of Hibiscus rosa-sinensis and hibiscus chlorotic ringspot virus (HCRSV), however, interactions between H. rosa-sinensis and HCRSV remain largely unknown. Hereon, firstly, HCRSV infection in H. rosa-sinensis from Zhangzhou city of China was confirmed by traditional electron microscopy, modern reverse transcription polymerase chain reaction and RNA-seq methods. Secondly, sequence feature analysis showed the full-length sequence of HCRSV-ZZ was 3,909 nucleotides (nt) in length and had a similar genomic structure with other carmovirus. It contains a 5' untranslated region (UTR), followed by seven open reading frames encoding for P28, P23, P81, P8, P9, P38, and P25, and the last a 3-terminal UTR. Thirdly, HCRSV-ZZ-derived vsiRNAs were identified and characterized for the first time from disease H. rosa-sinensis through sRNA-seq to reveal interactions between pathogen ant plant host. It was shown that the majority of HCRSV-ZZ-derived vsiRNAs were 21 nt, 22 nt, and 20 nt, with 21 nt being most abundant. The 5'-terminal nucleotide of HCRSV-ZZ vsiRNAs preferred U and C. HCRSV-ZZ vsiRNAs derived predominantly (72%) from the viral genome positive-strand RNA. The distribution of HCRSV-ZZ vsiRNAs along the viral genome is generally even, with some hot spots and cold spots forming in local regions. These hot spots and cold spots could be corresponded to the regions of stem loop secondary structures forming in HCRSV-ZZ genome by nucleotide paring. Taken together, our findings certify HCRSV infection in H. rosa-sinensis and provide an insight into interaction between HCRSV and H. rosa-sinensis and contribute to the prevention and treatment of this virus.

Cenangium Dieback Associated with Cenangium ferruginosum (Cenangium ferruginosum에 의한 소나무류 피목가지마름병)

  • Kim, Myoung-Ju;Kim, Kyung-Hee
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.2
    • /
    • pp.361-368
    • /
    • 2009
  • Cenangium ferruginosum was known as the causal agent of dieback of pines including Pinus koraiensis and Pinus densiflora. Since the first report of the disease in Korea in 1989, a group dying occurred in Seoul, Gyeonggi, Kangwon and Chungbuk in 2007 spring. Although C. ferreginosum was known as a weak pathogen or a parasite, this disease caused in stressed pine by drought, wounding, extremely cold weather or unusual warm winter. In this study, we explained the features of cenangium dieback with the characteristics of pathogen to understand the trend of disease associated with the climatic change of the world. We collected pycnidia and apothecia from the diseased branches and stems of P. koraiensis and P. densiflora in Gyeonggi, Chungcheong and Gyeongsang province to characterization of pathogen. The fungal development on the diseased branches were observed and the isolates from pycnidia and apothecia were identified as Cenangium ferruginosum by their morphological characteristics and the molecular techniques.

A Literature Study of Dermatosurgical Diseases in the ImJeungJiNamUiAn (臨證指南醫案에 나타난 피부외과 질환에 대한 문헌고찰)

  • Cho, Jae-Hun;Chae, Byung-Yoon;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.271-288
    • /
    • 2002
  • Authors investigated the pathogenesis and treatment of dennatosurgical diseases in the ImJeungJiNamUiAn(臨證指南醫案). 1. The symptoms and diseases of dermatosurgery were as follows; 1) BanSaJinRa(반사진라) : eczema, atopic dermatitis, seborrheic dermatitis, psoriasis, lichen planus, pityriasis rosea, hives, dermographism, angioedema, cholinergic urticaria, urticaria pigmentosa, acne, milium, syringoma, keratosis pilaris, discoid lupus erythematosus, hypersensitivity vasculitis, drug eruption, polymorphic light eruption, rheumatic fever, juvenile rheumatoid arthritis(Still's disease), acute febrile neutrophilic dermatosis(Sweet's syndrome), Paget's disease, folliculitis, viral exanthems, molluscum contagiosum, tinea, tinea versicolor, lymphoma, lymphadenitis, lymphangitis, granuloma annulare, cherry angioma 2) ChangYang(瘡瘍) : acute stage eczema, seborrheic dermatitis, stasis ulcer, intertrigo, xerosis, psoriasis, lichen planus, ichthyosis, pityriasis rosea, rosacea, acne, keratosis pilaris, dyshidrosis, dermatitis herpetiformis, herpes gestationis, bullae in diabetics, pemphigus, lupus erythematosus, fixed drug eruption, erythema multiforme, toxic epidermal necrolysis, toxic shock syndrome, staphylococcal scaled skin syndrome, scarlet fever, folliculitis, impetigo, pyoderma gangrenosum, tinea, candidiasis, scabies, herpes simplex, herpes zoster, chicken pox, Kawasaki syndrome, lipoma, goiter, thyroid nodule, thyroiditis, hyperthyroidism, thyroid cancer, benign breast disorder, breast carcinoma, hepatic abscess, appendicitis, hemorrhoid 3) Yeok(疫) : scarlet fever, chicken pox, measles, rubella, exanthem subitum, erythema infectiosum, Epstein-Barr virus infection, cytomegalovirus infection, hand-foot-mouth disease, Kawasaki disease 4) Han(汗) : hyperhidrosis 2. The pathogenesis and treatment of dermatosurgery were as follows; 1) When the pathogenesis of BalSa(발사), BalJin(發疹), BalLa(발라) and HangJong(項腫) are wind-warm(風溫), exogenous cold with endogenous heat(外寒內熱), wind-damp(風濕), the treatment of evaporation(解表) with Menthae Herba(薄荷), Arctii Fructus(牛蒡子), Forsythiae Fructus(連翹) Mori Cortex(桑白皮), Fritillariae Cirrhosae Bulbus(貝母), Armeniaoae Amarum Semen(杏仁), Ephedrae Herba(麻黃), Cinnamomi Ramulus(桂枝), Curcumae Longae Rhizoma(薑黃), etc can be applied. 2) When the pathogenesis of BuYang(부양), ChangI(瘡痍) and ChangJilGaeSeon(瘡疾疥癬) are wind-heat(風熱), blood fever with wind transformation(血熱風動), wind-damp(風濕), the treatment of wind-dispelling(疏風) with Arctii Fructus(牛蒡子), Schizonepetae Herba(荊芥), Ledebouriellae Radix(防風), Dictamni Radicis Cortex(白鮮皮), Bombyx Batrytioatus(白??), etc can be applied. 3) When the pathogenesis of SaHuHaeSu(사후해수), SaJin(사진), BalJin(發疹), EunJin(은진) and BuYang(부양) are wind-heat(風熱), exogenous cold with endogenous heat(外寒內熱), exogenous warm pathogen with endogenous damp-heat(溫邪外感 濕熱內蘊), warm pathogen's penetration(溫邪內陷), insidious heat's penetration of pericardium(伏熱入包絡), the treatment of Ki-cooling(淸氣) with TongSeongHwan(通聖丸), Praeparatum(豆?), Phyllostachys Folium(竹葉), Mori Cortex(桑白皮), Tetrapanacis Medulla(通草), etc can be applied. 4) When the pathogenesis of JeokBan(적반), BalLa(발라), GuChang(久瘡), GyeolHaek(結核), DamHaek(痰核), Yeong(?), YuJu(流注), Breast Diseases(乳房疾患) and DoHan(盜汗) are stagnancy's injury of Ki and blood(鬱傷氣血), gallbladder fire with stomach damp(膽火胃濕), deficiency of Yin in stomach with Kwolum's check (胃陰虛 厥陰乘), heat's penetration of blood collaterals with disharmony of liver and stomach(熱入血絡 肝胃不和), insidious pathogen in Kwolum(邪伏厥陰), the treatment of mediation(和解) with Prunellae Spica(夏枯草), Chrysanthemi Flos(菊花), Mori Folium (桑葉), Bupleuri Radix(柴胡), Coptidis Rhizoma(黃連), Scutellariae Radix(黃芩), Gardeniae Fructus(梔子), Cyperi Rhizoma(香附子), Toosendan Fructus(川?子), Curcumae Radix(鬱金), Moutan Cortex(牧丹皮), Paeoniae Radix Rubra(赤芍藥), Unoariae Ramulus Et Uncus(釣鉤藤), Cinnamorni Ramulus(桂枝), Paeoniae Radix Alba(白芍藥), Polygoni Multiflori Radix (何首烏), Cannabis Fructus (胡麻子), Ostreae Concha(牡蠣), Zizyphi Spinosae Semen(酸棗仁), Pinelliae Rhizoma(半夏), Poria(백복령). etc can be applied. 5) When the pathogenesis of BanJin(반진), BalLa(발라), ChangI(瘡痍), NamgChang(膿瘡). ChangJilGaeSeon(瘡疾疥癬), ChangYang(瘡瘍), SeoYang(署瘍), NongYang(膿瘍) and GweYang(潰瘍) are wind-damp(風濕), summer heat-damp(暑濕), damp-warm(濕溫), downward flow of damp-heat(濕熱下垂), damp-heat with phlegm transformation(濕熱化痰), gallbladder fire with stomach damp(膽火胃濕), overdose of cold herbs(寒凉之樂 過服), the treatment of damp-resolving(化濕) with Pinelliae Rhizoma(半夏), armeniacae Amarum Semen(杏仁), Arecae Pericarpium(大腹皮), Poria(백복령), Coicis Semen(薏苡仁), Talcum(滑石), Glauberitum(寒水石), Dioscoreae Tokoro Rhizoma(??), Alismatis Rhizoma(澤瀉), Phellodendri Cortex(黃柏), Phaseoli Radiati Semen(?豆皮), Bombycis Excrementum(?沙), Bombyx Batryticatus(白??), Stephaniae Tetrandrae Radix(防己), etc can be applied. 6) When the pathogenesis of ChangPo(瘡泡), hepatic abscess(肝癰) and appendicitis(腸癰) are food poisoning(食物中毒), Ki obstruction & blood stasis in the interior(기비혈어재과), damp-heat stagnation with six Bu organs suspension(濕熱結聚 六腑不通), the treatment of purgation(通下) with DaeHwangMokDanPiTang(大黃牧丹皮湯), Manitis Squama(穿山甲), Curcumae Radix(鬱金), Curcumae Longae Rhizoma(薑黃), Tetrapanacis Medulla(通草), etc can be applied. 7) When the pathogenesis of JeokBan(적반), BanJin(반진), EunJin(은진). BuYang(부양), ChangI(瘡痍), ChangPo(瘡泡), GuChang(久瘡), NongYang(膿瘍), GweYang(潰瘍), Jeong(정), Jeol(癤), YeokRyeo(疫?) and YeokRyeolpDan(疫?入?) are wind-heat stagnation(風熱久未解), blood fever in Yangmyong(陽明血熱), blood fever with transformation(血熱風動), heat's penetration of blood collaterals(熱入血絡). fever in blood(血分有熱), insidious heat in triple energizer(三焦伏熱), pathogen's penetration of pericardium(心包受邪), deficiency of Yong(營虛), epidemic pathogen(感受穢濁), the treatment of Yong & blood-cooling(淸營凉血) with SeoGakJiHwangTang(犀角地黃湯), Scrophulariae Radix(玄參), Salviae Miltiorrhizae Radix(丹參), Angelicae Gigantis Radix(當歸), Polygoni Multiflori Radix(何首烏), Cannabis Fructus(胡麻子), Biotae Semen(柏子仁), Liriopis Tuber(麥門冬), Phaseoli Semen(赤豆皮), Forsythiae Fructus(連翹), SaJin(사진), YangDok(瘍毒) and YeokRyeoIpDan(역려입단) are insidious heat's penetration of pericardium(伏熱入包絡), damp-warm's penetration of blood collaterals(濕溫入血絡), epidemic pathogen's penetration of pericardium(심포감수역려), the treatment of resuscitation(開竅) with JiBoDan(至寶丹), UHwangHwan(牛黃丸), Forsythiae Fructus(連翹), Curcumae Radix(鬱金), Tetrapanacis Medulla(通草), Acori Graminei Rhizoma(石菖蒲), etc can be applied. 9) When the pathogenesis of SaHuSinTong(사후신통), SaHuYeolBuJi(사후열부지), ChangI(瘡痍), YangSon(瘍損) and DoHan(盜汗) are deficiency of Yin in Yangmyong stomach(陽明胃陰虛), deficiency of Yin(陰虛), the treatment of Yin-replenishing(滋陰) with MaekMunDongTang(麥門冬湯), GyeongOkGo(瓊玉膏), Schizandrae Fructus(五味子), Adenophorae Radix(沙參), Lycii Radicis Cortex (地骨皮), Polygonati Odorati Rhizoma(玉竹), Dindrobii Herba(石斛), Paeoniae Radix Alba(白芍藥), Ligustri Lucidi Fructus (女貞子), etc can be applied. 10) When the pathogenesis of RuYang(漏瘍) is endogenous wind in Yang collaterals(陽絡內風), the treatment of endogenous wind-calming(息風) with Mume Fructus(烏梅), Paeoniae Radix Alba (白芍藥), etc be applied. 11) When the pathogenesis of GuChang(久瘡), GweYang(潰瘍), RuYang(漏瘍), ChiChang(痔瘡), JaHan(自汗) and OSimHan(五心汗) are consumption of stomach(胃損), consumption of Ki & blood(氣血耗盡), overexertion of heart vitality(勞傷心神), deficiency of Yong(營虛), deficiency of Wi(衛虛), deficiency of Yang(陽虛), the treatment of Yang-restoring & exhaustion-arresting(回陽固脫) with RijungTang(理中湯), jinMuTang(眞武湯), SaengMaekSaGunjaTang(生脈四君子湯), Astragali Radix (황기), Ledebouriellae Radix(防風), Cinnamomi Ramulus(桂枝), Angelicae Gigantis Radix(當歸), Ostreae Concha(牡蠣), Zanthoxyli Fructus(川椒), Cuscutae Semen(兎絲子), etc can be applied.

  • PDF

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon;Lee, Jeongmin;Kim, Jieun;Choi, Hyungseok;Kim, Jaehan
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.259-270
    • /
    • 2020
  • Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.