DOI QR코드

DOI QR Code

Comparative Whole Cell Proteomics of Listeria monocytogenes at Different Growth Temperatures

  • Won, Soyoon (Department of Food and Nutrition, Chungnam National University) ;
  • Lee, Jeongmin (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Jieun (Department of Food and Nutrition, Chungnam National University) ;
  • Choi, Hyungseok (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Jaehan (Department of Food and Nutrition, Chungnam National University)
  • Received : 2019.11.13
  • Accepted : 2019.11.27
  • Published : 2020.02.28

Abstract

Listeria monocytogenes is a gram-positive, facultative anaerobe food pathogen responsible for the listeriosis that mostly occurs during the low-temperature storage of a cold cut or dairy products. To understand the systemic response to a wide range of growth temperatures, L. monocytogenes were cultivated at a different temperature from 10℃ to 42℃, then whole cell proteomic analysis has been performed both exponential and stationary cells. The specific growth rate increased proportionally with the increase in growth temperature. The maximum growth rate was observed at 37℃ and was maintained at 42℃. Global protein expression profiles mainly depended on the growth temperatures showing similar clusters between exponential and stationary phases. Expressed proteins were categorized by their belonging metabolic systems and then, evaluated the change of expression level in regard to the growth temperature and stages. DnaK, GroEL, GroES, GrpE, and CspB, which were the heat&cold shock response proteins, increased their expression with increasing the growth temperatures. In particular, GroES and CspB were expressed more than 100-fold than at low temperatures during the exponential phase. Meanwhile, CspL, another cold shock protein, overexpressed at a low temperature then exponentially decreased its expression to 65-folds. Chemotaxis protein CheV and flagella proteins were highly expressed at low temperatures and stationary phases. Housekeeping proteins maintained their expression levels constant regardless of growth temperature or growth phases. Most of the growth related proteins, which include central carbon catabolic enzymes, were highly expressed at 30℃ then decreased sharply at high growth temperatures.

Keywords

References

  1. Farber J, Peterkin P. 1991. Listeria monocytogenes, a foodborne pathogen. Microbiol. Rev. 55: 476-511. https://doi.org/10.1128/MMBR.55.3.476-511.1991
  2. Little C, Gillespie I. 2008. Prepared salads and public health. J. Appl. Microbiol. 105: 1729-1743. https://doi.org/10.1111/j.1365-2672.2008.03801.x
  3. Lungu B, Ricke S, Johnson M. 2009. Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Anaerobe 15: 7-17. https://doi.org/10.1016/j.anaerobe.2008.08.001
  4. Lund BM, O 'Brien SJ. 2011. The occurrence and prevention of foodborne disease in vulnerable people. Foodborne Pathog. Dis. 8: 961-973. https://doi.org/10.1089/fpd.2011.0860
  5. Schlech III WF 3rd. 2000. Foodborne listeriosis. Clin. Infect. Dis. 31: 770-775. https://doi.org/10.1086/314008
  6. Low J, Donachie W. 1997. A review of Listeria monocytogenes and listeriosis. Vet. J. 153: 9-29. https://doi.org/10.1016/S1090-0233(97)80005-6
  7. Hamon M, Bierne H, Cossart P. 2006. Listeria monocytogenes: a multifaceted model. Nat. Rev. Microbiol. 4: 423-434. https://doi.org/10.1038/nrmicro1413
  8. te Giffel MC, Zwietering MH. 1999. Validation of predictive models describing the growth of Listeria monocytogenes. Int. J. Food Microbiol. 46: 135-149. https://doi.org/10.1016/S0168-1605(98)00189-5
  9. Pouillot R, Klontz KC, Chen Y, Burall LS, Macarisin D, Doyle M, et al. 2016. Infectious dose of Listeria monocytogenes in outbreak linked to ice cream, United States, 2015. Emerg. Infect. Dis. 22: 2113. https://doi.org/10.3201/eid2212.160165
  10. Kallipolitis BH, Ingmer H. 2001. Listeria monocytogenes response regulators important for stress tolerance and pathogenesis. FEMS Microbiol. Lett. 204: 111-115. https://doi.org/10.1016/S0378-1097(01)00386-X
  11. Walker S, Archer P, Banks JG. 1990. Growth of Listeria monocytogenes at refrigeration temperatures. J. Appl. Bacteriol. 68: 157-162. https://doi.org/10.1111/j.1365-2672.1990.tb02561.x
  12. Sorrells KM, Enigl DC, Hatfield JR. 1989. Effect of pH, acidulant, time, and temperature on the growth and survival of Listeria monocytogenes. J. Food Prot. 52: 571-573. https://doi.org/10.4315/0362-028x-52.8.571
  13. Control CfD, Prevention. 2011. Multistate outbreak of listeriosis associated with Jensen Farms cantaloupe--United States, August-September 2011. MMWR. Morb. Mortal. Wkly Rep. 60: 1357-1358.
  14. Dewey-Mattia D, Manikonda K, Hall AJ, Wise ME, Crowe SJ. 2018. Surveillance for foodborne disease outbreaks-United States, 2009-2015. MMWR Surveill. Summ. 67: 1-11.
  15. Jackson KA, Gould LH, Hunter JC, Kucerova Z, Jackson B. 2018. Listeriosis outbreaks associated with soft cheeses, United States, 1998-2014. Emerg. Infect. Dis. 24: 1116-1168. https://doi.org/10.3201/eid2406.171051
  16. Ding T, Iwahori Ji, Kasuga F, Wang J, Forghani F, Park M-S, et al. 2013. Risk assessment for Listeria monocytogenes on lettuce from farm to table in Korea. Food Control 30: 190-199. https://doi.org/10.1016/j.foodcont.2012.07.014
  17. Baek S-Y, Lim S-Y, Lee D-H, Min K-H, Kim C-M. 2000. Incidence and characterization of Listeria monocytogenes from domestic and imported foods in Korea. J. Food Protect. 63: 186-189. https://doi.org/10.4315/0362-028X-63.2.186
  18. Kruger E, Hecker M. 1998. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class III heat shock genes. J. Bacteriol. 180: 6681-6688. https://doi.org/10.1128/jb.180.24.6681-6688.1998
  19. van der Veen S, Hain T, Wouters JA, Hossain H, de Vos WM, Abee T, et al. 2007. The heat-shock response of Listeria monocytogenes comprises genes involved in heat shock, cell division, cell wall synthesis, and the SOS response. Microbiology 153: 3593-3607. https://doi.org/10.1099/mic.0.2007/006361-0
  20. Nelson KE, Fouts DE, Mongodin EF, Ravel J, DeBoy RT, Kolonay JF, et al. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32: 2386-2395. https://doi.org/10.1093/nar/gkh562
  21. B ayles DO, Annous B A, W ilkinson BJ. 1996. Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Appl. Environ. Microbiol. 62: 1116-1119. https://doi.org/10.1128/aem.62.3.1116-1119.1996
  22. Giotis ES, Muthaiyan A, Blair IS, Wilkinson BJ, McDowell DA. 2008. Genomic and proteomic analysis of the AlkaliTolerance Response (AlTR) in Listeria monocytogenes 10403S. BMC Microbiol. 8: 1. https://doi.org/10.1186/1471-2180-8-1
  23. Zhu W, Smith JW, Huang C-M. 2009. Mass spectrometrybased label-free quantitative proteomics. J. Biomed. Biotechnol. 2010: 840518.
  24. Agoston R, Soni K, Jesudhasan PR, Russell WK, Mohacsi-Farkas C, Pillai SD. 2009. Differential expression of proteins in Listeria monocytogenes under thermotolerance-inducing, heat shock, and prolonged heat shock conditions. Foodborne Pathog. Dis. 6: 1133-1140. https://doi.org/10.1089/fpd.2009.0286
  25. Cacace G, Mazzeo MF, Sorrentino A, Spada V, Malorni A, Siciliano RA. 2010. Proteomics for the elucidation of cold adaptation mechanisms in Listeria monocytogenes. J. Proteomics 73: 2021-2030. https://doi.org/10.1016/j.jprot.2010.06.011
  26. Pittman JR, Buntyn JO, Posadas G, Nanduri B, Pendarvis K, Donaldson JR. 2014. Proteomic analysis of cross protection provided between cold and osmotic stress in Listeria monocytogenes. J. Proteome Res. 13: 1896-1904. https://doi.org/10.1021/pr401004a
  27. Washburn MP, Ulaszek R, Deciu C, Schieltz DM, Yates JR, 3rd. 2002. Analysis of quantitative proteomic data generated via multi dimensional protein identification technology. Anal. Chem. 74: 1650-1657. https://doi.org/10.1021/ac015704l
  28. Christensen DP, Benson AK, Hutkins RW. 1999. Mutational analysis of the role of HPr in Listeria monocytogenes. Appl. Environ. Microbiol. 65: 2112-2115. https://doi.org/10.1128/aem.65.5.2112-2115.1999
  29. Burke TP, Portnoy DA. 2016. SpoVG is a conserved RNAbinding protein that regulates Listeria monocytogenes lysozyme resistance, virulence, and swarming motility. mBio. 7: e00240-00216.
  30. Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G. 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell. 16: 3496-3507. https://doi.org/10.1105/tpc.104.026765
  31. Agrawal RK, Sharma MR, Kiel MC, Hirokawa G, Booth TM, Spahn CM, et al. 2004. Visualization of ribosome-recycling factor on the Escherichia coli 70S ribosome: functional implications. Proc. Natl. Acad. Sci. 101: 8900-8905. https://doi.org/10.1073/pnas.0401904101
  32. Rouquette C, Ripio MT, Pellegrini E, Bolla JM, Tascon RI, Vazquez-Boland JA, et al. 1996. Identification of a ClpC ATPase required for stress tolerance and in vivo survival of Listeria monocytogenes. Mol. Microbiol. 21: 977-987. https://doi.org/10.1046/j.1365-2958.1996.641432.x
  33. Cotter PD, Emerson N, Gahan CG, Hill C. 1999. Identification and disruption of lisRK, a genetic locus encoding a twocomponent signal transduction system involved in stress tolerance and virulence in Listeria monocytogenes. J. Bacteriol. 181: 6840-6843. https://doi.org/10.1128/jb.181.21.6840-6843.1999
  34. Hanawa T, Fukuda M, Kawakamis H, Hirano H, Kamiya S, Yamamoto T. 1999. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress Chaperones 4: 118-128. https://doi.org/10.1054/csac.1998.0141
  35. Hebraud M, Guzzo J. 2000. The main cold shock protein of Listeria monocytogenes belongs to the family of ferritin-like proteins. FEMS Microbiol. Lett. 190: 29-34. https://doi.org/10.1016/S0378-1097(00)00310-4
  36. Thieringer HA, Jones PG, Inouye M. 1998. Cold shock and adaptation. Bioessays 20: 49-57. https://doi.org/10.1002/(SICI)1521-1878(199801)20:1<49::AID-BIES8>3.0.CO;2-N
  37. Jones PG, Inouye M. 1994. The cold-shock response-a hot topic. Mol. Microbiol. 11: 811-818. https://doi.org/10.1111/j.1365-2958.1994.tb00359.x
  38. Sharp FR, Massa SM, Swanson RA. 1999. Heat-shock protein protection. Trends Neurosci. 22: 97-99. https://doi.org/10.1016/S0166-2236(98)01392-7
  39. Schroder H, Langer T, Hartl F, Bukau B. 1993. DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12: 4137-4144. https://doi.org/10.1002/j.1460-2075.1993.tb06097.x
  40. Georgopoulos C, Liberek K, Zylicz M, Ang D. 1994. 9 Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. Cold Spring Harbor Monograph Archive. 26: 209-249.
  41. Segal G, Ron EZ. 1996. Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiol. Lett. 138: 1-10. https://doi.org/10.1111/j.1574-6968.1996.tb08126.x
  42. Hendrick JP, Hartl F-U. 1993. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62: 349-384. https://doi.org/10.1146/annurev.bi.62.070193.002025
  43. Schmid B, Klumpp J, Raimann E, Loessner MJ, Stephan R, Tasara T. 2009. Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions. Appl. Environ. Microbiol. 75: 1621-1627. https://doi.org/10.1128/AEM.02154-08
  44. Yamanaka K, Fang L, Inouye M. 1998. The CspA family in Escherichia coli: multiple gene duplication for stress adaptation. Mol. Microbiol. 27: 247-255. https://doi.org/10.1046/j.1365-2958.1998.00683.x
  45. Phadtare S, Alsina J, Inouye M. 1999. Cold-shock response and cold-shock proteins. Curr. Opin. Microbiol. 2: 175-180. https://doi.org/10.1016/S1369-5274(99)80031-9
  46. Day WA, Sajecki JL, Pitts TM, Joens LA. 2000. Role of catalase in Campylobacter jejuni intracellular survival. Infect. Immun. 68: 6337-6345. https://doi.org/10.1128/IAI.68.11.6337-6345.2000
  47. Lynch M, Kuramitsu H. 2000. Expression and role of superoxide dismutases (SOD) in pathogenic bacteria. Microb. Infect. 2: 1245-1255. https://doi.org/10.1016/S1286-4579(00)01278-8
  48. Fisher CW, Lee D, Dodge B-A, Hamman KM, Robbins JB, Martin SE. 2000. Influence of catalase and superoxide dismutase on ozone inactivation of Listeria monocytogenes. Appl. Environ. Microbiol. 66: 1405-1409. https://doi.org/10.1128/AEM.66.4.1405-1409.2000
  49. Laurent V, Loisel TP, Harbeck B, Wehman A, Grobe L, Jockusch BM, et al. 1999. Role of proteins of the Ena/VASP family in actin-based motility of Listeria monocytogenes. J. Cell Biol. 144: 1245-1258. https://doi.org/10.1083/jcb.144.6.1245
  50. Kathariou S, Mizumoto C, Kanenaka R, Allen R, Fok A. 1995. Repression of motility and flagellin production at $37^{\circ}C$ is stronger in Listeria monocytogenes than in the nonpathogenic species Listeria innocua. Can. J. Microbiol. 41: 572-577. https://doi.org/10.1139/m95-076