DOI QR코드

DOI QR Code

Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

  • Park, Chang-Jin (Department of Plant Biotechnology and PERI, Sejong University) ;
  • Seo, Young-Su (Department of Microbiology, Pusan National University)
  • Received : 2015.08.03
  • Accepted : 2015.09.14
  • Published : 2015.12.01

Abstract

As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

Keywords

References

  1. Anderson, S. L., Shen, T., Lou J, Xing, L., Blachere, N. E., Srivastava, P. K. and Rubin, B. Y. 1994. The endoplasmic reticular heat shock protein gp96 is transcriptionally upregulated in interferon-treated cells. J. Exp. Med. 180:1565-1569. https://doi.org/10.1084/jem.180.4.1565
  2. Bao, F., Huang, X., Zhu, C., Zhang, X., Li, X. and Yang, S. 2014. Arabidopsis HSP90 protein modulates RPP4-mediated temperature-dependent cell death and defense responses. New Phytol. 202:1320-1334. https://doi.org/10.1111/nph.12760
  3. Bhattarai, K. K., Li, Q., Liu, Y., Dinesh-Kumar, S. P. and Kaloshian, I. 2007. The MI-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol. 144:312-323. https://doi.org/10.1104/pp.107.097246
  4. Boevink, P. and Oparka, K. J. 2005. Virus-host interactions during movement processes. Plant Physiol. 138:1815-1821. https://doi.org/10.1104/pp.105.066761
  5. Bosl, B., Grimminger, V. and Walter, S. 2006. The molecular chaperone Hsp104--a molecular machine for protein disaggregation. J. Struct. Biol. 156:139-148. https://doi.org/10.1016/j.jsb.2006.02.004
  6. Boston, R. S., Viitanen, P. V. and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32:191-222. https://doi.org/10.1007/BF00039383
  7. Boter, M., Amigues, B., Peart, J., Breuer, C., Kadota, Y., Casais, C., Moore, G., Kleanthous, C., Ochsenbein, F., Shirasu, K. and Guerois, R. 2007. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell 19:3791-3804. https://doi.org/10.1105/tpc.107.050427
  8. Breiman, A. 2014. Plant Hsp90 and its co-chaperones. Curr. Protein Pept. Sci. 15:232-244. https://doi.org/10.2174/1389203715666140331115603
  9. Cai, B., Tomida, A., Mikami, K., Nagata, K. and Tsuruo, T. 1998. Down-regulation of epidermal growth factor receptor-signaling pathway by binding of GRP78/BiP to the receptor under glucose-starved stress conditions. J. Cell. Physiol. 177:282-288. https://doi.org/10.1002/(SICI)1097-4652(199811)177:2<282::AID-JCP10>3.0.CO;2-C
  10. Carvalho, H. H., Silva, P. A., Mendes, G. C., Brustolini, O. J., Pimenta, M. R., Gouveia, B. C., Valente, M. A., Ramos, H. J., Soares-Ramos, J. R. and Fontes, E. P. 2014. The endoplasmic reticulum binding protein BiP displays dual function in modulating cell death events. Plant Physiol. 164:654-670. https://doi.org/10.1104/pp.113.231928
  11. Catlett, M. G. and Kaplan, K. B. 2006. Sgt1p is a unique co-chaperone that acts as a client adaptor to link Hsp90 to Skp1p. J. Biol. Chem. 281:33739-33748. https://doi.org/10.1074/jbc.M603847200
  12. Chen, L., Hamada, S., Fujiwara, M., Zhu, T., Thao, N. P., Wong, H. L., Krishna, P., Ueda, T., Kaku, H., Shibuya, N., Kawasaki, T. and Shimamoto, K. 2010. The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity. Cell Host Microbe 7:185-196. https://doi.org/10.1016/j.chom.2010.02.008
  13. Chen, W., Syldath, U., Bellmann, K., Burkart, V. and Kolb, H. 1999. Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J. Immunol. 162:3212-3219.
  14. Chen, Z., Zhou, T., Wu, X., Hong, Y., Fan, Z. and Li, H. 2008. Influence of cytoplasmic heat shock protein 70 on viral infection of Nicotiana benthamiana. Mol. Plant Pathol. 9:809-817. https://doi.org/10.1111/j.1364-3703.2008.00505.x
  15. Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803-814. https://doi.org/10.1016/j.cell.2006.02.008
  16. Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11:539-548.
  17. Eichmann, R. and Schafer, P. 2012. The endoplasmic reticulum in plant immunity and cell death. Front. Plant Sci. 3:200.
  18. Fleck, M. W. 2006. Glutamate receptors and endoplasmic reticulum quality control: looking beneath the surface. Neuroscientist 12:232-244. https://doi.org/10.1177/1073858405283828
  19. Fukuda, S., Sumii, M., Masuda, Y., Takahashi, M., Koike, N., Teishima, J., Yasumoto, H., Itamoto, T., Asahara, T., Dohi, K. and Kamiya, K. 2001. Murine and human SDF2L1 is an endoplasmic reticulum stress-inducible gene and encodes a new member of the Pmt/rt protein family. Biochem. Biophys. Res. Commun. 280:407-414. https://doi.org/10.1006/bbrc.2000.4111
  20. Gorovits, R., Moshe, A., Ghanim, M. and Czosnek, H. 2013. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One 8:e70280. https://doi.org/10.1371/journal.pone.0070280
  21. Guo, B. and Li, Z. 2014. Endoplasmic reticulum stress in hepatic steatosis and inflammatory bowel diseases. Front. Genet. 5:242.
  22. Guo, F. and Snapp, E. L. 2013. ERdj3 regulates BiP occupancy in living cells. J. Cell Sci. 126:1429-1439. https://doi.org/10.1242/jcs.118182
  23. Gupta, D. and Tuteja, N. 2011. Chaperones and foldases in endoplasmic reticulum stress signaling in plants. Plant Signal Behav. 6:232-236. https://doi.org/10.4161/psb.6.2.15490
  24. Gupta, S. C., Sharma, A., Mishra, M., Mishra, R. K. and Chowdhuri, D. K. 2010. Heat shock proteins in toxicology: how close and how far? Life Sci. 86:377-384. https://doi.org/10.1016/j.lfs.2009.12.015
  25. Hafren, A., Hofius, D., Ronnholm, G., Sonnewald, U. and Makinen, K. 2010. HSP70 and its cochaperone CPIP promote potyvirus infection in Nicotiana benthamiana by regulating viral coat protein functions. Plant cell 22:523-535. https://doi.org/10.1105/tpc.109.072413
  26. Haweker, H., Rips, S., Koiwa, H., Salomon, S., Saijo, Y., Chinchilla, D., Robatzek, S. and von Schaewen, A. 2010. Pattern recognition receptors require N-glycosylation to mediate plant immunity. J. Biol. Chem. 285:4629-4636. https://doi.org/10.1074/jbc.M109.063073
  27. Hofius, D., Maier, A. T., Dietrich, C., Jungkunz, I., Bornke, F., Maiss, E. and Sonnewald, U. 2007. Capsid protein-mediated recruitment of host DnaJ-like proteins is required for Potato virus Y infection in tobacco plants. J. Virol. 81:11870-11880. https://doi.org/10.1128/JVI.01525-07
  28. Hong, S. W. and Vierling, E. 2001. Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J. 27:25-35. https://doi.org/10.1046/j.1365-313x.2001.01066.x
  29. Hong, Z., Jin, H., Tzfira, T. and Li, J. 2008. Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:3418-3429. https://doi.org/10.1105/tpc.108.061879
  30. Hubert, D. A., He, Y., McNulty, B. C., Tornero, P. and Dangl, J. L. 2009. Specific Arabidopsis HSP90.2 alleles recapitulate RAR1 cochaperone function in plant NB-LRR disease resistance protein regulation. Proc. Natl. Acad. Sci. USA 106:9556-9563. https://doi.org/10.1073/pnas.0904877106
  31. Hubert, D. A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K. and Dangl, J. L. 2003. Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22:5679-5689. https://doi.org/10.1093/emboj/cdg547
  32. Huttner, S. and Strasser, R. 2012. Endoplasmic reticulum-associated degradation of glycoproteins in plants. Front. Plant Sci. 3:67.
  33. Jin, H., Yan, Z., Nam, K. H. and Li, J. 2007. Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol. Cell 26:821-830. https://doi.org/10.1016/j.molcel.2007.05.015
  34. Kadota, Y. and Shirasu, K. 2012. The HSP90 complex of plants. Biochim. Biophys. Acta 1823:689-697. https://doi.org/10.1016/j.bbamcr.2011.09.016
  35. Kampinga, H. H. and Craig, E. A. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. 11:579-592. https://doi.org/10.1038/nrm2941
  36. Kanzaki, H., Saitoh, H., Ito, A., Fujisawa, S., Kamoun, S., Katou, S., Yoshioka, H. and Terauchi, R. 2003. Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol. Plant Pathol. 4:383-391. https://doi.org/10.1046/j.1364-3703.2003.00186.x
  37. Kawai, T. and Akira, S. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11:373-384. https://doi.org/10.1038/ni.1863
  38. Kim, H. J., Hwang, N. R. and Lee, K. J. 2007. Heat shock responses for understanding diseases of protein denaturation. Mol. Cells 23:123-131.
  39. Kim, N. H. and Hwang, B. K. 2015. Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol. 167:307-322. https://doi.org/10.1104/pp.114.253898
  40. Kleizen, B. and Braakman, I. 2004. Protein folding and quality control in the endoplasmic reticulum. Curr. Opin. Cell Biol. 16:343-349. https://doi.org/10.1016/j.ceb.2004.06.012
  41. Kotak, S., Larkindale, J., Lee, U., von Koskull-Doring, P., Vierling, E. and Scharf, K. D. 2007. Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10:310-316. https://doi.org/10.1016/j.pbi.2007.04.011
  42. Lee, A. S. 2001. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem. Sci. 26:504-510. https://doi.org/10.1016/S0968-0004(01)01908-9
  43. Li, J., Zhao-Hui, C., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., Zipfel, C. and Jones, J. D. 2009. Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proc. Natl. Acad. Sci. USA 106:15973-15978. https://doi.org/10.1073/pnas.0905532106
  44. Li, Z., Menoret, A. and Srivastava, P. 2002. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr. Opin. Immunol. 14:45-51. https://doi.org/10.1016/S0952-7915(01)00297-7
  45. Liberek, K., Lewandowska, A. and Zietkiewicz, S. 2008. Chaperones in control of protein disaggregation. EMBO J. 27:328-335. https://doi.org/10.1038/sj.emboj.7601970
  46. Liebrand, T. W., Smit, P., Abd-El-Haliem, A., de Jonge, R., Cordewener, J. H., America, A. H., Sklenar, J., Jones, A. M., Robatzek, S., Thomma, B. P., Tameling, W. I. and Joosten, M. H. 2012. Endoplasmic reticulum-quality control chaperones facilitate the biogenesis of Cf receptor-like proteins involved in pathogen resistance of tomato. Plant Physiol. 159:1819-1833. https://doi.org/10.1104/pp.112.196741
  47. Lin, M. Y., Chai, K. H., Ko, S. S., Kuang, L. Y., Lur, H. S. and Charng, Y. Y. 2014. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant Physiol. 164:2045-2053. https://doi.org/10.1104/pp.113.229609
  48. Lindquist, S. 1986. The heat-shock response. Annu. Rev. Biochem. 55:1151-1191. https://doi.org/10.1146/annurev.bi.55.070186.005443
  49. Lindquist, S. and Craig, E. A. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631-677. https://doi.org/10.1146/annurev.ge.22.120188.003215
  50. Liu, B. 2014. Heat Shock Protein gp96 as an Immune Chaperone of Inflammation and Cancer. Aust. J. Clin. Immunol. 1:1014.
  51. Liu, B. and Li, Z. 2008. Endoplasmic reticulum HSP90b1 (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin. Blood 112:1223-1230. https://doi.org/10.1182/blood-2008-03-143107
  52. Liu, E. S. and Lee, A. S. 1991. Common sets of nuclear factors binding to the conserved promoter sequence motif of two coordinately regulated ER protein genes, GRP78 and GRP94. Nucleic Acids Res. 19:5425-5431. https://doi.org/10.1093/nar/19.19.5425
  53. Liu, J. X. and Howell, S. H. 2010. Endoplasmic reticulum protein quality control and its relationship to environmental stress responses in plants. Plant Cell 22:2930-2942. https://doi.org/10.1105/tpc.110.078154
  54. Liu, J. Z. and Whitham, S. A. 2013. Overexpression of a soybean nuclear localized type-III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. Plant J. 74:110-121. https://doi.org/10.1111/tpj.12108
  55. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S. and Dinesh-Kumar, S. P. 2004. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279:2101-2108. https://doi.org/10.1074/jbc.M310029200
  56. Lu, R., Malcuit, I., Moffett, P., Ruiz, M. T., Peart, J., Wu, A. J., Rathjen, J. P., Bendahmane, A., Day, L. and Baulcombe, D. C. 2003. High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J. 22:5690-5699. https://doi.org/10.1093/emboj/cdg546
  57. Lu, X., Tintor, N., Mentzel, T., Kombrink, E., Boller, T., Robatzek, S., Schulze-Lefert, P. and Saijo, Y. 2009. Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc. Natl. Acad. Sci. USA 106:22522-22527. https://doi.org/10.1073/pnas.0907711106
  58. Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H. and Kiba, A. 2007. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 145:1588-1599. https://doi.org/10.1104/pp.107.105353
  59. Matsumiya, T., Imaizumi, T., Yoshida, H., Satoh, K., Topham, M. K. and Stafforini, D. M. 2009. The levels of retinoic acidinducible gene I are regulated by heat shock protein 90-alpha. J. Immunol. 182:2717-2725. https://doi.org/10.4049/jimmunol.0802933
  60. Meunier, L., Usherwood, Y. K., Chung, K. T. and Hendershot, L. M. 2002. A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13:4456-4469. https://doi.org/10.1091/mbc.E02-05-0311
  61. Molinari, M. and Helenius, A. 2000. Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288:331-333. https://doi.org/10.1126/science.288.5464.331
  62. Monaghan, J. and Zipfel, C. 2012. Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15:349-357. https://doi.org/10.1016/j.pbi.2012.05.006
  63. Moreno, A. A., Mukhtar, M. S., Blanco, F., Boatwright, J. L., Moreno, I., Jordan, M. R., Chen, Y., Brandizzi, F., Dong, X., Orellana, A. and Pajerowska-Mukhtar, K. M. 2012. IRE1/bZIP60-mediated unfolded protein response plays distinct roles in plant immunity and abiotic stress responses. PLoS One 7:e31944. https://doi.org/10.1371/journal.pone.0031944
  64. Nekrasov, V., Li, J., Batoux, M., Roux, M., Chu, Z. H., Lacombe, S., Rougon, A., Bittel, P., Kiss-Papp, M., Chinchilla, D., van Esse, H. P., Jorda, L., Schwessinger, B., Nicaise, V., Thomma, B. P., Molina, A., Jones, J. D. and Zipfel, C. 2009. Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J. 28:3428-3438. https://doi.org/10.1038/emboj.2009.262
  65. Nguyen, N., Francoeur, N., Chartrand, V., Klarskov, K., Guillemette, G. and Boulay, G. 2009. Insulin promotes the association of heat shock protein 90 with the inositol 1,4,5-trisphosphate receptor to dampen its $Ca^{2+}$ release activity. Endocrinology 150:2190-2196. https://doi.org/10.1210/en.2008-1167
  66. Ohashi, K., Burkart, V., Flohe, S. and Kolb, H. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164:558-561. https://doi.org/10.4049/jimmunol.164.2.558
  67. Ohta, M. and Takaiwa, F. 2014. Emerging features of ER resident J-proteins in plants. Plant Signal Behav. 9:e28194. https://doi.org/10.4161/psb.28194
  68. Park, C. J., Bart, R., Chern, M., Canlas, P. E., Bai, W. and Ronald, P. C. 2010. Overexpression of the endoplasmic reticulum chaperone BiP3 regulates XA21-mediated innate immunity in rice. PLoS One 5(2):e9262. https://doi.org/10.1371/journal.pone.0009262
  69. Park, C. J., Sharma, R., Lefebvre, B., Canlas, P. E. and Ronald, P. C. 2013. The endoplasmic reticulum-quality control component SDF2 is essential for XA21-mediated immunity in rice. Plant Sci. 210:53-60. https://doi.org/10.1016/j.plantsci.2013.05.003
  70. Park, C. J., Song, M. Y., Kim, C. Y., Jeon, J. S. and Ronald, P. C. 2014. Rice BiP3 regulates immunity mediated by the PRRs XA3 and XA21 but not immunity mediated by the NB-LRR protein, Pi5. Biochem. Biophys. Res. Commun. 448:70-75. https://doi.org/10.1016/j.bbrc.2014.04.093
  71. Qiu, X. B., Shao, Y. M., Miao, S. and Wang, L. 2006. The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell Mol. Life Sci. 63:2560-2570. https://doi.org/10.1007/s00018-006-6192-6
  72. Queitsch, C., Hong, S. W., Vierling, E. and Lindquist, S. 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell 12:479-492. https://doi.org/10.1105/tpc.12.4.479
  73. Queitsch, C., Sangster, T. A. and Lindquist, S. 2002. Hsp90 as a capacitor of phenotypic variation. Nature 417:618-624. https://doi.org/10.1038/nature749
  74. Ramakrishnan, M., Tugizov, S., Pereira, L. and Lee, A. S. 1995. Conformation-defective herpes simplex virus 1 glycoprotein B activates the promoter of the grp94 gene that codes for the 94-kD stress protein in the endoplasmic reticulum. DNA Cell Biol. 14:373-384. https://doi.org/10.1089/dna.1995.14.373
  75. Ritossa, F. 1962. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 18:571-573. https://doi.org/10.1007/BF02172188
  76. Rug, M. and Maier, A. G. 2011. The heat shock protein 40 family of the malaria parasite Plasmodium falciparum. IUBMB Life 63:1081-1086. https://doi.org/10.1002/iub.525
  77. Saijo, Y. 2010. ER quality control of immune receptors and regulators in plants. Cell. Microbiol. 12:716-724. https://doi.org/10.1111/j.1462-5822.2010.01472.x
  78. Saijo, Y., Tintor, N., Lu, X., Rauf, P., Pajerowska-Mukhtar, K., Haweker, H., Dong, X., Robatzek, S. and Schulze-Lefert, P. 2009. Receptor quality control in the endoplasmic reticulum for plant innate immunity. EMBO J. 28:3439-3449. https://doi.org/10.1038/emboj.2009.263
  79. Sangster, T. A., Bahrami, A., Wilczek, A., Watanabe, E., Schellenberg, K., McLellan, C., Kelley, A., Kong, S. W., Queitsch, C. and Lindquist, S. 2007. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. PLoS One 2:e648. https://doi.org/10.1371/journal.pone.0000648
  80. Sangster, T. A. and Queitsch, C. 2005. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr. Opin. Plant Biol. 8:86-92. https://doi.org/10.1016/j.pbi.2004.11.012
  81. Schott, A., Ravaud, S., Keller, S., Radzimanowski, J., Viotti, C., Hillmer, S., Sinning, I. and Strahl, S. 2010. Arabidopsis stromal-derived Factor2 (SDF2) is a crucial target of the unfolded protein response in the endoplasmic reticulum. J. Biol. Chem. 285:18113-18121. https://doi.org/10.1074/jbc.M110.117176
  82. Seo, Y. S., Lee, S. K., Song, M. Y., Suh, J. P., Hahn, T. R., Ronald, P. and Jeon, J. S. 2008. The HSP90-SGT1-RAR1 molecular chaperone complex: A core modulator in plant immunity. J. Plant Biol. 51:1-10. https://doi.org/10.1007/BF03030734
  83. Shafikova, T. N., Omelichkina, Y. V., Soldatenko, A. S., Enikeev, A. G., Kopytina, T. V., Rusaleva, T. M. and Volkova, O. D. 2013. Tobacco cell cultures transformed by the hsp101 gene exhibit an increased resistance to Clavibacter michiganensis ssp. sepedonicus. Doklady Biol. Sci. 450:165-167. https://doi.org/10.1134/S0012496613030162
  84. Shen, Y. and Hendershot, L. M. 2005. ERdj3, a stress-inducible endoplasmic reticulum DnaJ homologue, serves as a cofactor for BiP's interactions with unfolded substrates. Mol. Biol. Cell 16:40-50. https://doi.org/10.1091/mbc.e04-05-0434
  85. Shirasu, K. 2009. The HSP90-SGT1 chaperone complex for NLR immune sensors. Annu. Rev. Plant Biol. 60:139-164. https://doi.org/10.1146/annurev.arplant.59.032607.092906
  86. Shirasu, K. and Schulze-Lefert, P. 2003. Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci. 8:252-258. https://doi.org/10.1016/S1360-1385(03)00104-3
  87. Shiu, R. P., Pouyssegur, J. and Pastan, I. 1977. Glucose depletion accounts for the induction of two transformation-sensitive membrane proteinsin Rous sarcoma virus-transformed chick embryo fibroblasts. Proc. Natl. Acad. Sci. USA 74:3840-3844. https://doi.org/10.1073/pnas.74.9.3840
  88. Simons, G., Groenendijk, J., Wijbrandi, J., Reijans, M., Groenen, J., Diergaarde, P., Van der Lee, T., Bleeker, M., Onstenk, J., de Both, M., Haring, M., Mes, J., Cornelissen, B., Zabeau, M. and Vos, P. 1998. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055-1068. https://doi.org/10.1105/tpc.10.6.1055
  89. Sitia, R. and Braakman, I. 2003. Quality control in the endoplasmic reticulum protein factory. Nature 426:891-894. https://doi.org/10.1038/nature02262
  90. Soellick, T., Uhrig, J. F., Bucher, G. L., Kellmann, J. W. and Schreier, P. H. 2000. The movement protein NSm of Tomato spotted wilt tospovirus (TSWV): RNA binding, interaction with the TSWV N protein, and identification of interacting plant proteins. Proc. Natl. Acad. Sci. USA 97:2373-2378. https://doi.org/10.1073/pnas.030548397
  91. Takahashi, A., Casais, C., Ichimura, K. and Shirasu, K. 2003. HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100:11777-11782. https://doi.org/10.1073/pnas.2033934100
  92. Te, J., Jia, L., Rogers, J., Miller, A. and Hartson, S. D. 2007. Novel subunits of the mammalian Hsp90 signal transduction chaperone. J. Proteome Res. 6:1963-1973. https://doi.org/10.1021/pr060595i
  93. Tsan, M. F. and Gao, B. 2009. Heat shock proteins and immune system. J. Leukoc. Biol. 85:905-910. https://doi.org/10.1189/jlb.0109005
  94. Vabulas, R. M., Ahmad-Nejad, P., da Costa, C., Miethke, T., Kirschning, C. J., Hacker, H. and Wagner, H. 2001. Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J. Biol. Chem. 276:31332-31339. https://doi.org/10.1074/jbc.M103217200
  95. van Eden, W., Spiering, R., Broere, F. and van der Zee, R. 2012. A case of mistaken identity: HSPs are no DAMPs but DAMPERs. Cell Stress and Chaperones 17:281-292. https://doi.org/10.1007/s12192-011-0311-5
  96. van Montfort, R. L., Basha, E., Friedrich, K. L., Slingsby, C. and Vierling, E. 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Biol. 8:1025-1030. https://doi.org/10.1038/nsb722
  97. Van Ooijen, G., Lukasik, E., Van Den Burg, H. A., Vossen, J. H., Cornelissen, B. J. and Takken, F. L. 2010. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2. Plant J. 63:563-572. https://doi.org/10.1111/j.1365-313X.2010.04260.x
  98. Vandenberghe, W., Nicoll, R. A. and Bredt, D. S. 2005. Interaction with the unfolded protein response reveals a role for stargazin in biosynthetic AMPA receptor transport. J. Neurosci. 25:1095-1102. https://doi.org/10.1523/JNEUROSCI.3568-04.2005
  99. Verchot, J. 2012. Cellular chaperones and folding enzymes are vital contributors to membrane bound replication and movement complexes during plant RNA virus infection. Front. Plant Sci. 3:275.
  100. Vierling, E. 1991. The Roles of Heat Shock Proteins in Plants. Annu. Rev. Plant Physiol. & Plant Mol. Biol. 42:579-620. https://doi.org/10.1146/annurev.pp.42.060191.003051
  101. Vitale, A. and Boston, R. S. 2008. Endoplasmic reticulum quality control and the unfolded protein response: insights from plants. Traffic 9:1581-1588. https://doi.org/10.1111/j.1600-0854.2008.00780.x
  102. Wallin, R. P., Lundqvist, A., More, S. H., von Bonin, A., Kiessling, R. and Ljunggren, H. G. 2002. Heat-shock proteins as activators of the innate immune system. Trends Immunol. 23:130-135. https://doi.org/10.1016/S1471-4906(01)02168-8
  103. Wang, D., Weaver, N. D, Kesarwani, M. and Dong, X. 2005. Induction of protein secretory pathway is required for systemic acquired resistance. Science 308:1036-1040. https://doi.org/10.1126/science.1108791
  104. Wang, W., Vinocur, B., Shoseyov, O. and Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9:244-252. https://doi.org/10.1016/j.tplants.2004.03.006
  105. Whitley, D., Goldberg, S. P. and Jordan, W. D. 1999. Heat shock proteins: a review of the molecular chaperones. J. Vasc. Sur. 29:748-751. https://doi.org/10.1016/S0741-5214(99)70329-0
  106. Williams, J. H. and Ireland, H. E. 2008. Sensing danger--Hsp72 and HMGB1 as candidate signals. J. Leukoc. Biol. 83:489-492. https://doi.org/10.1189/jlb.0607356
  107. Xu, G., Li, S., Xie, K., Zhang, Q., Wang, Y., Tang, Y., Liu, D., Hong, Y., He, C. and Liu, Y. 2012a. Plant ERD2-like proteins function as endoplasmic reticulum luminal protein receptors and participate in programmed cell death during innate immunity. Plant J. 72:57-69. https://doi.org/10.1111/j.1365-313X.2012.05053.x
  108. Xu, Z. S., Li, Z. Y., Chen, Y., Chen, M., Li, L. C. and Ma, Y. Z. 2012b. Heat shock protein 90 in plants: molecular mechanisms and roles in stress responses. Int. J. Mol. Sci. 13:15706-15723. https://doi.org/10.3390/ijms131215706
  109. Yang, Y., Liu, B., Dai, J., Srivastava, P. K., Zammit, D. J., Lefrancois, L. and Li, Z. 2007. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215-226. https://doi.org/10.1016/j.immuni.2006.12.005
  110. Ye, C., Dickman, M. B., Whitham, S. A., Payton, M. and Verchot, J. 2011. The unfolded protein response is triggered by a plant viral movement protein. Plant Physiol. 156:741-755. https://doi.org/10.1104/pp.111.174110
  111. Zhang, Y., Dorey, S., Swiderski, M. and Jones, J. D. 2004. Expression of RPS4 in tobacco induces an AvrRps4-independent HR that requires EDS1, SGT1 and HSP90. Plant J. 40:213-224. https://doi.org/10.1111/j.1365-313X.2004.02201.x

Cited by

  1. Transcriptomic responses to conspecific and congeneric competition in co-occurring Trifolium vol.105, pp.3, 2017, https://doi.org/10.1111/1365-2745.12761
  2. Responses of Plant Proteins to Heavy Metal Stress—A Review vol.8, 2017, https://doi.org/10.3389/fpls.2017.01492
  3. Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew vol.156, 2017, https://doi.org/10.1016/j.jprot.2017.01.016
  4. Identification of Abiotic Stress Protein Biomarkers by Proteomic Screening of Crop Cultivar Diversity vol.4, pp.3, 2016, https://doi.org/10.3390/proteomes4030026
  5. Transcriptome profiling in leaves representing aboveground parts of apple replant disease affected Malus domestica ‘M26’ plants vol.222, 2017, https://doi.org/10.1016/j.scienta.2017.05.012
  6. In retrospect: Eighty years of stress vol.539, pp.7628, 2016, https://doi.org/10.1038/nature20473
  7. An overview on molecular chaperones enhancing solubility of expressed recombinant proteins with correct folding vol.102, 2017, https://doi.org/10.1016/j.ijbiomac.2017.04.025
  8. Simultaneous Improvement and Genetic Dissection of Salt Tolerance of Rice (Oryza sativa L.) by Designed QTL Pyramiding vol.8, 2017, https://doi.org/10.3389/fpls.2017.01275
  9. Identification of differentially regulated maize proteins conditioning Sugarcane mosaic virus systemic infection vol.215, pp.3, 2017, https://doi.org/10.1111/nph.14645
  10. Identification, Characterization and Expression Profiling of Stress-Related Genes in Easter Lily (Lilium formolongi) vol.8, pp.7, 2017, https://doi.org/10.3390/genes8070172
  11. Alterations in the proteome of wheat primary roots after wortmannin application during seed germination vol.39, pp.10, 2017, https://doi.org/10.1007/s11738-017-2511-9
  12. Chloroplast Hsp70 Isoform Is Required for Age-Dependent Tissue Preference of Bamboo mosaic virus in Mature Nicotiana benthamiana Leaves vol.30, pp.8, 2017, https://doi.org/10.1094/MPMI-01-17-0012-R
  13. Benefit of HSP90α intervention on ischemia-reperfusion injury of venous blood-congested flaps vol.12, pp.1, 2016, https://doi.org/10.3892/etm.2016.3317
  14. Global Transcriptome Analysis and Identification of Differentially Expressed Genes in Strawberry after Preharvest Application of Benzothiadiazole and Chitosan vol.8, 2017, https://doi.org/10.3389/fpls.2017.00235
  15. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein ( HSP20 ) family genes in bread wheat vol.211, 2017, https://doi.org/10.1016/j.jplph.2017.01.004
  16. The heat-shock protein/chaperone network and multiple stress resistance vol.15, pp.4, 2017, https://doi.org/10.1111/pbi.12659
  17. PredHSP: Sequence Based Proteome-Wide Heat Shock Protein Prediction and Classification Tool to Unlock the Stress Biology vol.11, pp.5, 2016, https://doi.org/10.1371/journal.pone.0155872
  18. Overexpression of OsHSP18.0-CI Enhances Resistance to Bacterial Leaf Streak in Rice vol.10, pp.1, 2017, https://doi.org/10.1186/s12284-017-0153-6
  19. Transcriptomic analysis of molecular responses in Malus domestica ‘M26’ roots affected by apple replant disease vol.94, pp.3, 2017, https://doi.org/10.1007/s11103-017-0608-6
  20. Moderate virulence caused by the protist Labyrinthula zosterae in ecosystem foundation species Zostera marina under nutrient limitation vol.571, 2017, https://doi.org/10.3354/meps12104
  21. Transcript and hormone analyses reveal the involvement of ABA-signalling, hormone crosstalk and genotype-specific biological processes in cold‐shock response in wheat vol.253, 2016, https://doi.org/10.1016/j.plantsci.2016.09.017
  22. Detecting early signs of heat and drought stress in Phoenix dactylifera (date palm) vol.12, pp.6, 2017, https://doi.org/10.1371/journal.pone.0177883
  23. Bubbling cell death: A hot air balloon released from the nucleus in the cold vol.241, pp.12, 2016, https://doi.org/10.1177/1535370216644531
  24. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon vol.12, pp.7, 2017, https://doi.org/10.1371/journal.pone.0180352
  25. Geographical and environmental determinants of the genetic structure of wild barley in southeastern Anatolia vol.13, pp.2, 2018, https://doi.org/10.1371/journal.pone.0192386
  26. Overexpression of the alfalfa DnaJ-like protein (MsDJLP) gene enhancestolerance to chilling and heat stresses in transgenic tobacco plants vol.42, pp.13036092, 2018, https://doi.org/10.3906/biy-1705-30
  27. Differential expression of leaf proteins in four cultivars of peanut (Arachis hypogaea L.) under water stress vol.8, pp.3, 2018, https://doi.org/10.1007/s13205-018-1180-8
  28. Comparative transcriptome analysis reveals phytohormone signalings, heat shock module and ROS scavenger mediate the cold-tolerance of rubber tree vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-23094-y
  29. Differentially expressed proteins associated with drought tolerance in bananas (Musa spp.) vol.40, pp.3, 2018, https://doi.org/10.1007/s11738-018-2638-3
  30. Validation of reference genes for qRT-PCR data normalisation in lentil (Lens culinaris) under leaf developmental stages and abiotic stresses pp.0974-0430, 2018, https://doi.org/10.1007/s12298-018-0609-1
  31. The coupling of transcriptome and proteome adaptation during development and heat stress response of tomato pollen vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-4824-5
  32. Genome-Wide Identification, Classification and Expression Analysis of the HSP Gene Superfamily in Tea Plant (Camellia sinensis) vol.19, pp.9, 2018, https://doi.org/10.3390/ijms19092633
  33. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes vol.19, pp.1, 2018, https://doi.org/10.1186/s12864-018-5012-3
  34. An Insight into Powdery Mildew-Infected, Susceptible, Resistant, and Immune Sunflower Genotypes vol.18, pp.16, 2018, https://doi.org/10.1002/pmic.201700418
  35. Topical heat shock protein 70 prevents imiquimod-induced psoriasis-like inflammation in mice vol.23, pp.5, 2018, https://doi.org/10.1007/s12192-018-0895-0
  36. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity vol.19, pp.6, 2018, https://doi.org/10.3390/ijms19061662
  37. Epigenetic responses to abiotic stresses during reproductive development in cereals pp.2194-7961, 2018, https://doi.org/10.1007/s00497-018-0343-4
  38. Hub Protein Controversy: Taking a Closer Look at Plant Stress Response Hubs vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00694
  39. Meloidogyne incognita PASSE-MURAILLE (MiPM) Gene Encodes a Cell-Penetrating Protein That Interacts With the CSN5 Subunit of the COP9 Signalosome vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00904
  40. Endophytic Bacillus and Pseudomonas spp. Modulate Apple Shoot Growth, Cellular Redox Balance, and Protein Expression Under in Vitro Conditions vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00889
  41. ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine vol.8, pp.1664-8021, 2017, https://doi.org/10.3389/fgene.2017.00235
  42. Activation of the Transducers of Unfolded Protein Response in Plants vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00214
  43. The Apoplastic Secretome of Trichoderma virens During Interaction With Maize Roots Shows an Inhibition of Plant Defence and Scavenging Oxidative Stress Secreted Proteins vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00409
  44. Hsp90 Interacts With Tm-22 and Is Essential for Tm-22-Mediated Resistance to Tobacco mosaic virus vol.9, pp.1664-462X, 2018, https://doi.org/10.3389/fpls.2018.00411
  45. A large-scale multiomics analysis of wheat stem solidness and the wheat stem sawfly feeding response, and syntenic associations in barley, Brachypodium, and rice vol.18, pp.3, 2018, https://doi.org/10.1007/s10142-017-0585-5
  46. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19124089
  47. Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes vol.9, pp.1, 2019, https://doi.org/10.3390/agronomy9010022
  48. Chl a fluorescence and proteomics reveal protection of the photosynthetic apparatus to dehydration in tolerant but not in susceptible wheat cultivars vol.63, pp.1, 2019, https://doi.org/10.32615/bp.2019.033
  49. Responses of olive plants exposed to different irrigation treatments in combination with heat shock: physiological and molecular mechanisms during exposure and recovery pp.1432-2048, 2019, https://doi.org/10.1007/s00425-019-03109-2
  50. A cell-wall protein SRPP provides physiological integrity to the Arabidopsis seed vol.132, pp.1, 2019, https://doi.org/10.1007/s10265-018-01083-6
  51. Functional annotation of putative QTL associated with black tea quality and drought tolerance traits vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-018-37688-z
  52. Genome wide association study identifies novel single nucleotide polymorphic loci and candidate genes involved in soybean sudden death syndrome resistance vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0212071
  53. Proteomics: A tool to decipher cold tolerance pp.2197-0025, 2019, https://doi.org/10.1007/s40626-019-00140-2
  54. Identification of somatic embryogenesis (SE) related proteins through label-free shotgun proteomic method and cellular role in Catharanthus roseus (L.) G. Don pp.1573-5044, 2019, https://doi.org/10.1007/s11240-019-01563-0
  55. Multiple molecular defense strategies in Brachypodium distachyon surmount Hessian fly (Mayetiola destructor) larvae-induced susceptibility for plant survival vol.9, pp.1, 2019, https://doi.org/10.1038/s41598-019-39615-2