DOI QR코드

DOI QR Code

Systemic Infection of Maize, Sorghum, Rice, and Beet Seedlings with Fumonisin-Producing and Nonproducing Fusarium verticillioides Strains

  • Dastjerdi, Raana (Seed and Plant Improvement Research Institute (SPII)) ;
  • Karlovsky, Petr (Molecular Phytopathology and Mycotoxin Research, Georg-August-University Gottingen)
  • Received : 2015.05.26
  • Accepted : 2015.07.27
  • Published : 2015.12.01

Abstract

Two fumonisin-nonproducing strains of Fusarium verticillioides and their fumonisin producing progenitors were tested for aggressiveness toward maize, sorghum, rice, and beetroot seedlings grown under greenhouse conditions. None of the plants showed obvious disease symptoms after root dip inoculation. Fungal biomass was determined by species-specific real-time PCR. No significant (P = 0.05) differences in systemic colonization were detected between the wild type strains and mutants not producing fumonisins. F. verticillioides was not detected in any of the non-inoculated control plants. The fungus grew from roots to the first two internodes/leaves of maize, rice and beet regardless of fumonisin production. The systemic growth of F. verticillioides in sorghum was limited. The results showed that fumonisin production was not required for the infection of roots of maize, rice and beet by F. verticillioides.

Keywords

References

  1. Adejumo, T. O., Hettwer, U. and Karlovsky, P. 2007. Survey of maize from south-western Nigeria for zearalenone, alpha- and beta-zearalenols, fumonisin B1 and enniatins produced by Fusarium species. Food Add. Contam. 24:993-1000. https://doi.org/10.1080/02652030701317285
  2. Anukul, N., Maneeboon, T., Roopkham, C., Chuaysrinule, C. and Mahakarnchanakul, W. 2014. Fumonisin and T-2 toxin production of Fusarium spp. isolated from complete feed and individual agricultural commodities used in shrimp farming. Mycotoxin Res. 30:9-16. https://doi.org/10.1007/s12550-013-0182-y
  3. Bai, G. H. and Shaner, G. 1996. Variation in Fusarium graminearum and cultivar resistance to wheat scab. Plant Dis. 80:975-979. https://doi.org/10.1094/PD-80-0975
  4. Bezuidenhout, S. C., Gelderblom, W. C. A., Gorst-Allman, C. P., Horak, R. M., Marasas, W. F. O., Spiteller, G. and Vleggaar, R. 1988. Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc. Chem. Commun. 11:743-745.
  5. Bhargava, S. N., Shukla, D. N., Singh, N. K. and Singh, N. 1979. Fusarium moniliforme causing panicle rot of rice. Indian Phytopathol. 31:367-369.
  6. Bottalico, A., Logrieco, A., Ritieni, A., Moretti, A., Randazzo, G. and Corda, P. 1995. Beauvericin and fumonisin B1 in preharvest Fusarium moniliforme maize ear rot in Sardinia. Food Addit. Contam. 12:599-607. https://doi.org/10.1080/02652039509374348
  7. Brown, D. W., Butchko, R. A. E., Busman, M. and Proctor, R. H. 2007. The Fusarium verticillioides FUM gene cluster encodes a Zn(II)2Cys6 protein that affect FUM gene expression and fumonisin production. Eukaryot. Cell 6:1210-1218. https://doi.org/10.1128/EC.00400-06
  8. Cankar, K., Stebih, D., Dreo, T., Zel, J. and Gruden, K. 2006. Critical points of DNA quantification by real-time PCR effects of DNA extraction method and sample matrix on quantification of genetically modified organisms. BMC. Biotech. 6:37-51. https://doi.org/10.1186/1472-6750-6-37
  9. Castella, G., Bragulat, M. R. and Cabanes, F. J. 1999. Surveillance of fumonisins in maize-based feeds and cereals from Spain. J. Agric. Food Chem. 47:4707-4710. https://doi.org/10.1021/jf981236d
  10. da Silva, J. B., Pozzi, C. R., Mallozzi, M. A., Ortega, E. M. and Correa, B. 2000. Mycoflora and occurrence of aflatoxin B1 and fumonisin B1 during storage of Brazilian sorghum. J. Agric. Food Chem. 48:4352-4356. https://doi.org/10.1021/jf990054w
  11. Demeke, T. and Jenkins, G. R. 2010. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal. Bioanal. Chem. 396:1977-1990. https://doi.org/10.1007/s00216-009-3150-9
  12. Desjardins, A. E., Munkvold, G. P., Plattner, R. D. and Proctor, R. H. 2002. FUM1-A gene required for fumonisin biosynthesis but not for maize ear rot and ear infection by Gibberella moniliformis in field tests. Mol. Plant-Microbe Interact. 15:1157-1164. https://doi.org/10.1094/MPMI.2002.15.11.1157
  13. Desjardins, A. E., Manandhar, H. K., Plattner, R. D., Manandhar, G. G., Poling, S. M. and Maragos, C. M. 2000. Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl. Environ. Microbiol. 66:1020-1025. https://doi.org/10.1128/AEM.66.3.1020-1025.2000
  14. Desjardins, A. E. and Plattner, R. D. 2000. Fumonisin B1-nonproducing strains of Fusarium verticillioides cause maize (Zea mays) ear infection and ear rot. J. Agric. Food Chem. 48:5773-5780. https://doi.org/10.1021/jf000619k
  15. Desjardins, A. N., Plattner, R. D., Nelsen, T. C. and Leslie, J. F. 1995. Genetic analysis of fumonisin production and virulence of Gibberella fujikuroi mating population A (Fusarium moniliforme) on maize (Zea mays) seedlings. Appl. Environ. Microbiol. 61:79-86.
  16. dos Reis, T. A., Zorzete, P., Pozzi, C. R., da Silva, V. N., Ortega, E. and Correa, B. 2010. Mycoflora and fumonisin contamination in Brazilian sorghum from sowing to harvest. J. Sci. Food Agric. 90:1445-1451. https://doi.org/10.1002/jsfa.3962
  17. Gilchrist, D. G. 1998. Programmed cell death in plant disease: the purpose and promise of cellular suicide. Annu. Rev. Phytopathol. 36:393-414. https://doi.org/10.1146/annurev.phyto.36.1.393
  18. Glenn, A. E., Zitomer, N. C., Zimeri, A. M., Williams, L. D., Riley, R. T. and Proctor, R. H. 2008. Transformation-mediated complementation of a FUM gene cluster deletion in Fusarium verticillioides restores both fumonisin production and pathogenicity. Mol. Plant-Microbe Interact. 21:87-97. https://doi.org/10.1094/MPMI-21-1-0087
  19. Han, Z., Tangni, E. K., Huybrechts, B., Munaut, F., Scauflaire, J., Wu, A. and Callebaut, A. 2014. Screening survey of co-production of fusaric acid, fusarin C, and fumonisins B1, B2 and B3 by Fusarium strains grown in maize grains. Mycotoxin Res. 30:231-240. https://doi.org/10.1007/s12550-014-0207-1
  20. Hanson, L. E. and Hill, A. L. 2004. Fusarium species causing fusarium yellows of sugarbeet. J. Sugar Beet Res. 41:163-178. https://doi.org/10.5274/jsbr.41.4.163
  21. Horne, E. C., Kumpatla, S. P., Patterson, K. A., Gupta, M. and Thompson, S. A. 2004. Improved high-throughput sunflower and cotton genomic DNA extraction and PCR fidelity. Plant Mol. Biol. Rep. 22:83a-83i. https://doi.org/10.1007/BF02773352
  22. Hornunga, R. W. and Reeda, L. D. 1990. Estimation of average concentration in presence of nondetectable values. Appl. Occup. Environ. Hyg. 5:46-51. https://doi.org/10.1080/1047322X.1990.10389587
  23. Jardine, D. J. and Leslie, J. F. 1999. Aggressiveness to mature maize plants of Fusarium strains differing in ability to produce fumonisin. Plant Dis. 83:690-693. https://doi.org/10.1094/PDIS.1999.83.7.690
  24. Kedera, C. J., Leslie, J. F. and Claflin, L. E. 1992. Systemic infection of corn by Fusarium moniliforme. (Abstr.) Phytopathology 82:1138.
  25. Kushiro, M., Nagata, R., Nakagawa, H. and Nagashima, H. 2008. Liquid chromatographic deletion of fumonisins in rice seeds. Rep. Nat'l. Food Res. Inst. 72:37-44.
  26. Lamprecht, S. C., Marasas, W. F. O., Alberts, J. F., Cawood, M. E., Gelderblom, W. C. A., Shephard, G. S., Thiel, P. G. and Calitz, F. J. 1994. Phytotoxicity of fumonisins and TA-toxin to corn and tomato. Phytopathology 84:383-391. https://doi.org/10.1094/Phyto-84-383
  27. Leslie, J. F., Plattner, R. D., Desjardins, A. E. and Klittich, C. J. R. 1992. Fumonisin B1 production by strains from different mating populations of Gibberella fujikuroi (Fusarium section Liseola). Phytopathology 82:341-345. https://doi.org/10.1094/Phyto-82-341
  28. Logrieco, A., Mule, G., Moretti, A. and Bottalico, A. 2002. Toxigenic Fusarium species and mycotoxins associated with maize ear rot in Europe. Eur. J. Plant Pathol. 108:597-609. https://doi.org/10.1023/A:1020679029993
  29. Logrieco, A., Moretti, A., Ritieni, A., Bottalico, A. and Corda, P. 1995. Occurrence and toxigenicity of Fusarium proliferatum from preharvest maize ear rot, and associated mycotoxins in Italy. Plant Dis. 79:727-731. https://doi.org/10.1094/PD-79-0727
  30. Maheshwar, P. K., Moharram, S. A. and Janardhana, G. R. 2009. Detection of fumonisin producing Fusarium verticillioides in paddy (Oryza sativa L.) using polymerase chain reaction (PCR). Braz. J. Microbiol. 40:134-138. https://doi.org/10.1590/S1517-83822009000100023
  31. Mikusova, P., Srobarova, A., Sulyok, M. and Santini, A. 2013. Fusarium fungi and associated metabolites presence on grapes from Slovakia. Mycotoxin Res. 29:97-102. https://doi.org/10.1007/s12550-013-0157-z
  32. Mule, G., Susca, G. S. and Moretti, A. 2004. A species-specific PCR assay based on the calmodulin partial gene for identification of Fusarium verticillioides, F. proliferatum and F. subglutinans. Eur. J. Plant Pathol. 110:495-502. https://doi.org/10.1023/B:EJPP.0000032389.84048.71
  33. Munitz, M. S., Resnik, S. L., Pacin, A., Salas, P. M., Gonzalez, H. H. L., Montti, M. I. T., Drunday, V. and Guillin, E. A. 2014. Mycotoxigenic potential of fungi isolated from freshly harvested Argentinean blueberries. Mycotoxin Res. 30:221-229. https://doi.org/10.1007/s12550-014-0206-2
  34. Munkvold, G. P. 2003. Epidemiology of Fusarium diseases and their mycotoxins in maize ears. Eur. J. Plant Pathol. 109:705-713. https://doi.org/10.1023/A:1026078324268
  35. Munkvold, G. P. and Carlton, W. M. 1997. Influence of inoculation method on systemic Fusarium moniliforme infection of maize plants grown from infected seeds. Plant Dis. 81:211-216. https://doi.org/10.1094/PDIS.1997.81.2.211
  36. Munkvold, G. P. and Desjardins, A. E. 1997. Fumonisins in maize: can we reduce their occurrence. Plant Dis. 81:556-565. https://doi.org/10.1094/PDIS.1997.81.6.556
  37. Munkvold, G. P., McGee, D. C. and Carlton, W. M. 1997. Importance of different pathways for maize kernel infection by Fusarium moniliforme. Phytopathology 87:209-217. https://doi.org/10.1094/PHYTO.1997.87.2.209
  38. Nelson, P. E., Desjardins, A. E. and Plattner, R. D. 1993. Fumonisins, mycotoxins produced by Fusarium species: biology, chemistry, and significance. Annu. Rev. Phytopathol. 31:233-252. https://doi.org/10.1146/annurev.py.31.090193.001313
  39. Nutz, S., Doell, K. and Karlovsky, P. 2011. Determination of the LOQ in real-time PCR by receiver operating characteristic curve analysis: application to qPCR assays for Fusarium verticillioides and F. proliferatum. Anal. Bioanal. Chem. 401:717-726. https://doi.org/10.1007/s00216-011-5089-x
  40. Plante, D., Belanger, G., Leblanc, D., Ward, P., Houde, A. and Trottier, Y. L. 2010. The use of bovine serum albumin to improve the RT-qPCR detection of foodborne viruses rinsed from vegetable surfaces. Lett. Appl. Microbiol. 52:239-244.
  41. Proctor, R. H., Desjardins, A. E., McCormick, S. P., Plattner, R. D., Alexander, N. J. and Brown, D. W. 2002. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur. J. Plant Pathol. 108:691-698. https://doi.org/10.1023/A:1020637832371
  42. Proctor, R. H., Desjardins, A. E., Plattner, R. D. and Hohn, T. 1999. A polyketide synthase gene required for biosynthesis of fumonisin mycotoxins in Gibberella fujikuroi mating population A. Fungal. Genet. Biol. 27:100-112. https://doi.org/10.1006/fgbi.1999.1141
  43. Srobarova, A., Moretti, A., Ferracane, R., Ritieni, A. and Logrieco, A. 2002. Toxigenic Fusarium species of Liseola section in pre-harvest maize ear rot, and associated mycotoxins in Slovakia. Eur. J. Plant Pathol. 108:299-306. https://doi.org/10.1023/A:1015645813231
  44. Tansakul, N., Limsuwan, S. and Trongvanichnam, K. 2012. Fumonisin monitoring in Thai red cargo rice by reversed-phase high-performance liquid chromatography with electrospray ionization ion trap mass spectrometry. Int. Food Res. J. 19:1561-1566.
  45. Usleber, E., Straka, M. and Terplan, G. 1994. Enzyme immunoassay for fumonisin B1 applied to corn-based food. J. Agric. Food Chem. 42:1392-1396. https://doi.org/10.1021/jf00042a027
  46. Wang, E., Norred, W. P., Bacon, C. W., Riley, R. T. and Merrill, A. H. 1991. Inhibition of sphingolipid biosynthesis by fumonisins. Implications for diseases associated with Fusarium moniliforme. J. Biol. Chem. 266:14486-14490.
  47. Williams, L. D. and Munkvold, G. P. 2008. Systemic infection by Fusarium verticillioides in maize plants grown under three temperature regimes. Plant Dis. 92:1695-1700. https://doi.org/10.1094/PDIS-92-12-1695
  48. Williams, L. D., Glenn, A. E., Zimeri, A. M., Bacon, C. W., Smith, M. A. and Riley, R. T. 2007. Fumonisin disruption of ceramide biosynthesis in maize roots and the effects on plant development and Fusarium verticillioides-induced seedling disease. J. Agric. Food Chem. 55:2937-2946. https://doi.org/10.1021/jf0635614
  49. Wei, T., Lu, G. and Clover, G. 2008. Novel approaches to mitigate primer interaction and eliminate inhibitors in multiplex PCR, demonstrated using an assay for detection of three strawberry viruses. J. Virol. Methods 151:132-139. https://doi.org/10.1016/j.jviromet.2008.03.003

Cited by

  1. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry imaging of ochratoxin A and fumonisins in mold-infected food vol.30, pp.23, 2016, https://doi.org/10.1002/rcm.7733
  2. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed vol.33, pp.3, 2017, https://doi.org/10.1007/s12550-017-0277-y
  3. : Advancements in Understanding the Toxicity, Virulence, and Niche Adaptations of a Model Mycotoxigenic Pathogen of Maize vol.108, pp.3, 2018, https://doi.org/10.1094/PHYTO-06-17-0203-RVW
  4. TLC-Digital Image-Based Fluorometric Analysis of Ergosterol and Chitin Content in Food Grains Artificially Infested with Aspergillus flavus and Fusarium verticillioides vol.11, pp.5, 2018, https://doi.org/10.1007/s12161-017-1123-8